Biogas upgrading – a technical review

Kerstin Hoyer Kuala Lumpur May 26th 2016

Presentation of myself

- Education:
 - M.Sc. Chemical Process Engineering
 - PhD Chemical Process Engineering, Production of ethanol from softwood
- Work:
 - Process Engineer, Process Manager at Malmberg Water, biogas upgrading and water treatment 2014-2016
 - Research Area Director Transportation and Fuels at Energiforsk, the Swedish Energy Research Centre since Feb 2016

Dr. Kerstin Hoyer kerstin.hoyer@energiforsk.se

Presentation of Energiforsk

Who was SGC?

- SGC the Swedish Gas Technology Centre
- Vision: Catalyzing energy gas development for sustainable solutions
- Mission:
 - Reference point for gas research in Sweden
 - Coordinate research and development in the area of gas technology with focus on renewable gases
 - Support for commercialization of sustainable technical solutions

Who is Energiforsk?

- Research areas:
 - Transportation and fuels
 - Energy in the forest industry
 - Fuel bases production of electricity and heat
 - District heating and cooling
 - Electricity nets, wind and solar electricity
 - Water power
 - Nuclear power
 - Energy systems and markets
 - Energy use incl. transportation

Reports on biogas upgrading

BIOGAS UPGRADING - TECHNICAL REVIEW

REPORT 2016:27

- Water scrubber and PSA main technologies
- Amine scrubber start to take significant market share
- Membrane upgrading, organic physical scrubbers and cryogenic distillation considered upcoming technologies

- "Biogas upgrading a technical review"
- Energiforsk 2016:275

Content

- Report "Biogas upgrading a technical review":
 - Biogas upgrading techniques
 - Comparison between biogas upgrading techniques
 - Impurities
 - Cost (investment, operational)
 - Gas treatment, removal of impurities
 - Product gas quality (requirements in different European countries)
 - Different uses of product gas, biomethane
 - Different uses of carbon dioxide as a byproduct

Content

- Report "Biogas upgrading a technical review":
 - Biogas upgrading techniques
 - Comparison between biogas upgrading techniques
 - Impurities
 - Cost (investment, operational)
 - Gas treatment, removal of impurities
 - Product gas quality (requirements in different European countries)
 - Different uses of product gas, biomethane
 - Different uses of carbon dioxide as a byproduct

Biogas upgrading, plants in operation 2015

IEA Task 37, statistics on operational biogas upgrading plants among IEA Task 37 member countries, data from 2015

Biogas upgrading plants over time

Biogas upgrading techniques

- Pressure swing adsorption (PSA)
 - CO₂ and CH₄ adsorb differently on a surface at different pressures.
- Water scrubber
- Amine scrubber
- Organic physical scrubber
 - CO₂ and CH₄ dissolve differently in solvents such as water, amines and organic solvents.

Organic physical scrubber in Wolfshagen, Germany from BMF Haase

Biogas upgrading techniques

- Membrane separation
 - CO₂ passes through a semi permeable membrane while CH₄ does not.
- Cryogenic upgrading
 - Distillation of CO₂ and CH₄ at low temperatures.

Layout av membrananläggning från EnviTec

What comes onto the biogas upgrading process?

• Except methane and carbon dioxide:

 H_2S H_2O Volatile organic carbon (VOC) N_2 H_2O H_2 N_2 O_2 H_2 N_2 N_2 H_2

- The amount of these depend on the substrate...
 - More VOC in biogas from household waste/food waste
 - More siloxanes in biogas from sewage sludge
- ... as well as operation of the anaerobic digestion
 - Less H₂S with dosage of iron chloride or iron oxide

Gas cleaning

- Desulphurization
- Siloxane removal
- Ammonia removal
- Oxygen removal
- VOC/BTEX removal
- Methane removal in side streams
- Important to consider the sequence of these purification methods!
- Gas cleaning in raw gas, product gas or side stream (stripper air, CO₂ stream)?

Where do these compounds go?

Water scrubber

- Biogas pressurized
- Absorption column: CO₂ dissolves in the water
- Biomethane dried
- Flash column
- Desorption with air: CO₂ desorbs from the water which is recycled.

Water scrubber

- H_2S , $NH_3 \rightarrow$ stripper air, water bleed
- VOC \rightarrow gas condensate, stripper air
- O_2 , $N_2 \rightarrow$ product gas / biomethane
- Drying of product gas needed
- Traces of CH₄ in stripper air

Amine scrubber

- Absorption column: CO₂ reacts with amine and is transferred to the solution
- Desorption with heat
- Biomethane dried
- Works at low pressure.

Amine scrubber

- H₂S → CO₂ stream (At high H₂S concentrations in the raw gas, a polish filter in the product gas may be needed for amine scrubbers.)
- VOC, $NH_3 \rightarrow gas$ condensate, CO_2 stream
- O_2 , $N_2 \rightarrow$ product gas / biomethane
- Drying of product gas needed
- Very pure CO₂ can be produced.

Organic physical scrubber

- Biogas pressurized
- Absorption column: CO₂ dissolves in the organic solvent
- Biomethane may need drying (has a dewpoint around -20 °C at 1 bar(a)).
- Desorption with air: CO₂ desorbs from the solvent which is recycled.

Organic physical scrubber

- H_2S , NH_3 , \rightarrow stripper air
- VOC → gas condensate, stripper air (Water insoluble VOCs are concentrated in the solvent and can be removed by an additional cleaning step.)
- O_2 , $N_2 \rightarrow$ product gas / biomethane
- Product gas will have a dew point around -20 °C at 1 bar(a).
- Traces of CH₄ in stripper air

PSA – pressure swing adsorption

- Biogas pressurized
- Adsorption column: CO₂ retained
- Pressure released when column saturated → CO₂ released
- Several columns needed for continuous operation
- Columns filled with activated carbon, zeolites, silica gels or carbon molecular sieves (CMS)

PSA – pressure swing adsorption

- H₂S, VOC, NH₃, O₂, N₂ → CO₂ stream BUT H₂S needs to be removed in pretreatment due to irreversible binding to the adsorbent! Also VOC and NH₃ need to be removed in pretreatment.
- $H_2 \rightarrow \text{product gas} / \text{biomethane}$
- No drying of product gas needed

Membrane separation

- Biogas pressurized to 10-20 bar(a)
- Membrane: CO₂ passes through the membrane to the permeate side, CH₄ retained on the retentate side
- Several membrane steps to optimize product quality and minimize methane slip

Membrane separation

- $H_2S \rightarrow CO_2$ stream, significant amount to product gas (commonly removed in pretreatment to avoid acid condensation on membranes)
- N₂, VOC → product gas BUT certain VOCs damage the membrane fiber and VOCs are commonly removed in pretreatment
- $NH_3 \rightarrow gas$ condensate in pretreatment drying
- $O_2 \rightarrow CO_2$ stream and product gas
- No drying of product gas needed
- Most membranes sensitive to liquid water, oil and particles

Comparison of techniques

Data for specific investment cost and energy consumption collected from biogas upgrading suppliers for a standard case.

	Raw gas specifications	Product gas requirements
Pressure:	20 mbar(g)	> 4 bar(g)
M e t h a n e concentration	60 vol%	> 97 vol%
Sulphur concentration	200 ppm H_2S	< 20 mg/Nm ³ (excl. odorisation)
W a t e r concentration	Saturated with water at 40 °C	Dew point -10 °C at 200 bar(g)
O t h e r requirements	Max. 0.1 vol% O_2 and 0.4 vol% N_2 , no siloxanes, max. 100 ppm NH ₃	

Also: 1% methane slip, containerized solution, no heat recovery, annual average

Comparison of techniques

Investment cost (euro/(Nm³ raw gas/h))

Specific investment cost for biogas upgrading, data from different suppliers.

- Lower specific investment cost with higher capacity, especially above 1000 Nm³/ h.
- Distribution between suppliers but no general trend concerning techniques.
- Largest distribution between suppliers at low capacities.
- Economy of scale most dominant for membranes at low capacities and for scrubbers at higher capacities.

Comparison of techniques

- Energy consumption
 - 0,2-0,3 kWh/Nm³ biogas for all techniques (electricity except for amine scrubbers where electricity consumption is lower but also heat is needed)
 - No significant difference between techniques has been shown by the collected data.
- Methane slip
 - Amount of methane
 which is found in side
 streams and this not
 present in the product
 gas (% of methane in
 the raw gas)

	Methane slip
Pressure swing adsorption (PSA)	1-1.5%
Water scrubber	1%
Amine scrubber	<0.1%
Membrane separation	0.5%
Organic physical scrubber	1-2%
Cryogenic upgrading	No data

Thanks to...

Reference group:

- Air Liquide
- Ammongas
- Biofrigas
- BMF Haase
- Carbotech
- DMT
- DVGW
- Envitec
- Greenlane Biogas
- Malmberg Water
- NeoZeo
- Pentair Haffman
- Purac Puregas
- Scandinavian Biogas
- Sysadvance

Additional funding:

Waste Management Sweden (Avfall Sverige) DGC, Danish Gas Technology Centre Stockholm Gas The Swedish Water & Wastewater Association (Svenskt Vatten) SVGW (Swiss Gas Industry)

Project partner:

Want to know more?

The report "Biogas upgrading – technical review" and many more reports on biogas can be found at

http://www.energiforsk.se/rapportsok/

