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Executive summary 
 
During the last decade the deregulated electricity market has been evolving in the western 
countries. This has changed the market considerably for the electricity producers as well 
as the consumers, resulting in an interest for distributed small-scale electricity generation. 
One of these small-scale electricity production units is the microturbine, which today is 
manufactured in the size between 30 to approximately 500 kWe. These units are excellent 
for self-support in electricity and heat for small businesses, as well as usage of earlier 
considered waste, which is reformed to fuel for combustion in these units. However these 
small-scale units have to be very cost effective and they do not have the possibility to 
carry personnel costs or a high rate of maintenance. 
 
The need of a well functioning Condition Monitoring System (CMS) is therefore of great 
importance to make these units profitable in the long run. One tool that has been proven 
to be both fast and does not require large computational memory is Artificial Neural 
Networks (ANNs). In this report a type of ANN denominated Feed-Forward Neural 
Network (FFNN) has been tested for modeling of the Turbec microturbine Combined 
Heat and Power (CHP) unit, T100. This modeling is to be looked upon as a first stage in a 
three stage rocket, leading to a CMS including both sensor validation and fault diagnosis. 
This type of ANN utilizes the black-box approach, matching inputs with the desired 
outputs. By using available measurements for the T100 units, the ANN can be trained to 
learn the characteristics and behavior of the microturbine statistically, i.e. no physical 
relationships are involved in this model. 
 
The general idea here was to look at the possibility of formulating a general ANN model 
for the whole fleet of microturbines, which could be delivered with every new engine. 
The CHP units, which data was used for this modeling were two units situated at Kastrup 
in Denmark. This choice was made since the engines have been operating the same 
amount of time, the conditions that they experience are similar, and there have been no 
major overhauls to any of the engines. First the modeling approach that was used was to 
train an FFNN with data from only one of these units, to establish a certainty that it is 
possible to use the available data for this task. The result of this study was that a 
maximum modeling error of 4.7% was reached, with an average error of 1.2%. This 
result was considered to be satisfactory, so the test was carried further, introducing the 
data from the other engine to the network. The result in this second attempt, however, 
increased the maximum modeling error to above 15% and there were a number of points 
above 10%. Since this result was not considered to be adequate, the third strategy was to 
train the FFNN with data from both engines simultaneously. Some improvement was 
obtained by this measure, but still it could not be comparable to the result that the 
individual model entailed. A conclusion that was drawn here was that the ANN models 
are preferably developed for each engine individually, i.e. it was not possible to formulate 
a general ANN model. However, it could be worth the effort trying to train a general 
ANN with the use of data from the performance tests, carried out for each engine before 
delivery. This general model would then be sent with the engines and then be updated 
continuously on-line during for instance the first operation year, making the model more 
individual and accurate.  
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A question that comes to mind when modeling is considered is of course, what is 
satisfactory modeling results? This is often a question for the user of the model, but the 
quality of the measurements is always an issue that has to be considered. In this case the 
error distributions of the measurement probes were given by Turbec for a number of 
parameters used in the ANN model. How do these propagate through the model? When 
using physical relationships and equations during modeling it is possible to calculate the 
error distribution of the outputs. However, when ANNs are considered it is not as simple. 
A test was carried out, manipulating the data within the margin of errors of the 
measurements to investigate the propagation through the network. Interesting results that 
were obtained here was that the ANN is that the rate of measurement error propagation is 
somehow proportional to the modeling error. This means that a badly trained network is 
influenced vastly by the measurement errors of the inputs of the network. This is however 
an issue that has to be further investigated to be statistically stipulated. 
 
To conclude the study and to show on potential future work the following could be said. 
It is possible to use ANN for modeling of the Turbec T100 CHP unit, even though the 
choce of sensors and the measurements carried out were not intended for this type of 
modeling. Once the model is trained and fixed it is very fast since no iterations are 
necessary and hereby computational memory of only a few kB is used of the model. The 
model could, however, never be better than the data it is trained with. For the future there 
are some questions that. The model has potential of being much more accurate and a 
close collaboration with the manufacturer would introduce the possibility of identifying 
and refining the measurement setup, and hereby also the network. A goal of modeling 
error of less than one percent is desirable, since this would introduce the opportunity of 
including the ANN model with the control system. It is also the authors’ opinion that to 
obtain an ANN model with lower error, probably additional parameter measurements 
have to be included. Measurements of mass flows of air and gas, and inlet temperature of 
the district heating water, and gas composition could be useful for a refinement of the 
ANN model. 
 
To be able to formulate an all-inclusive CMS, formulation of the faults and degradation 
together with modeling or measuring of the same has to be carried out. This is considered 
as possible if a better model of the system is prepared, either by utilizing the existing 
physical model from Turbec or by additional measurement logs from the existing CHP 
units. This would lead to an effective CMS system which is both cheap and fast, and 
within the scope of small-scale energy production. 
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1 Introduction 
 
During the last decade the deregulated electricity market has been evolving in the western 
countries. This has changed the market considerably for the electricity producers as well as 
the consumers, resulting in an interest for distributed small-scale electricity generation. 
These small-scale units have also become interesting due to environmental taxes and fees, 
and political incentives.  
 
One of these small-scale electricity production units is the microturbine, which today is 
manufactured in the size between 30 to approximately 500 kWe. These units are excellent 
for self-support in electricity and heat for small businesses, as well as usage of earlier 
considered waste, which is reformed to fuel for combustion in these units. 
 
The work carried out in this report has been made possible by data from the 
EU-project Optimised Microturbine Energy Systems (OMES). 
 

1.1 Background of the OMES project 
The participants in the OMES project are Dansk Olie og Naturgas A/S (DK), GASUM OY 
(SF), Svenskt Gastekniskt Center AB (S), Den Norske Stats Oljeselskap a.s (N), Vattenfall 
AB (S), and Turbec AB (S). As sub-contractors to these contractors are among others, the 
universities NTNU (N), LTH (S), and AAU (DK). 
 
The project contains development and demonstration work concerning design, installation 
and operation of 18 micro gas turbine based CHP units in different applications including 
development of necessary control and peripheral equipment. The same core engine/CHP 
unit of 100 kWe (Manufacturer Turbec, Sweden) will be used as basis for all installations. 
 
Data on energy efficiency, availability, emission, O/M costs etc. will be recorded and 
reported over the 1-2 year's operation period. The data obtained will form a basis for 
possible energy savings and reduced emission through the use of efficient microturbines in 
CHP applications.  

1.2 Objective 
The objective with this report is to summarize the measurements made available to LTH (9 
CHP microturbine units) and to investigate their usefulness when trying to model the CHP 
units with Artificial Neural Networks (ANNs). Modeling of the CHP unit with ANN could 
seem as an exaggerated measure, since the physical modeling of this engine is often 
possible. However this modeling should be looked upon as a first necessary stage in a 
future three-stage rocket, where process identification, sensor validation, and fault 
diagnosis all are to be carried out by ANNs.  
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1.3 Report outline 
This report has as its main target to show on the possibilities of using ANNs as modeling 
tools for process identification. Since ANN cannot be considered as a common knowledge 
a short survey of this tool is presented in section 2. In section 3 the available measurements 
are investigated and commented further, as well as overhauls made for some of the 
microturbine units. This section is then followed by the description of the developed ANN 
models used for identification of the microturbine units in section 4. Finally concluding 
remarks regarding the results are elucidated in section 0, followed by some words about the 
future work in section 0. 
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2 Artificial neural networks 
 
The technology of Artificial Neural Networks originates from the structure of the 
biological nervous system and the function of the human brain. This biological system is 
very complex with non-linear, parallel information processing, which has the capability of 
representing, interacting with, and adapting to the surroundings. To be able to translate this 
behavior into a model, simulating a power process for example, would be very useful. 
 
Some basic tasks where ANNs have been shown to be useful are: 
 
9 function approximation – process identification 
9 fault diagnostics – pattern recognition 
9 estimation of degradation 
9 sensor validation 
9 control 
9 time-series prediction 
9 dynamic system modeling 

 
The first task, function approximation, can be used as an engineering tool to model 
components and/or entire processes. In all the work carried out at LTH regarding process 
modeling/identification using ANN [1, 3, 5, 6, 12], the network architecture called multi-
layer, Feed-Forward Neural Network (FFNN) has been utilized successfully with 
backpropagation as the learning algorithm. This type of network architecture has also been 
used at LTH for sensor validation [9] and fault diagnosis [4]. Due to this, an explanation of 
what FFNN is and how it mathematically works are given below in section 2.2.  
 

2.1 Characteristics of ANN 
As mentioned, artificial neural networks are able to solve non-linear, multivariable tasks, 
which is a great advantage for this tool compared to physical modeling, where this could be 
a difficulty. ANNs, which are modeled with a trail-and-error technique, are very fast 
models once they are trained and do not require much computational memory. This is due 
to the fact that no iterations are required within the fixed model. ANN is also a tool that is 
useful for a wide range of applications and for different system configurations. 
 
However, the disadvantage with ANNs is that measured data is needed for the training of 
the model, which means that neural networks are not used for pre-design of heat and power 
systems. Once the model is trained it is also only valid for the specific configuration of the 
system. This means that if additional components are added or if the system is altered in 
any way, the model is no longer valid. The ANN model is also not better than the data it 
has been trained with. 
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2.2 Feed-forward neural networks 
A feed-forward neural network contains a number of neurons, i.e. computational units, 
which are connected to each other, see Figure 1. The information or input from the 
surroundings is passed forward from the input layer of the network through the connections 
and summarized in the next layer of neurons. In this second layer, the total summarized 
input, also called effective input, sj, is propagated through an activation function, which 
produces an output, yj. This output is then either one of the outputs of the network or it is 
propagated further as an input to the next layer. This feed-forward process is shown in 
Figure 1, where the close-up of a single neuron showing the mathematical procedure 
carried out in a hidden neuron (summation of the inputs and calculation of the output value, 
y). 
 
When building/programming a neural network it has to be trained with input-output 
patterns for the network to recognize the process at hand. This means that a selection of 
inputs and outputs has to be carried out. The selection of outputs is up to the user of the 
network, but the choice of inputs is more difficult and of most importance. The inputs have 
to include all parameters that affect the outputs that are to be predicted. When a vast 
amount of measured parameters are available, the best way of choosing the inputs is to use 
a-priory knowledge together with something called pruning. The parameters often used as 
inputs are the parameters that cannot be controlled by the operator, such as ambient 
conditions, but also the parameters that are directly controlled by the operator, such as load 
or a temperature.   
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Figure 1, Multi-layer feed-forward neural network. 
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Pruning is a trial-and-error procedure where the inputs are included or excluded one by one 
through training of different neural networks. One example of how this pruning is carried 
out is to introduce all parameters that are not outputs as inputs. By excluding one of these 
input parameters and train the network without it, the output result of this new network is 
compared with the result of the network that included all the input parameters. If the 
prediction result is unchanged or better when a parameter is excluded, this input parameter 
can be considered as unimportant for the model and be excluded, i.e. pruned. 
 

2.2.1 Training of the network 
The term training has been unexplained until now and here follows a short description of 
what training involves and why this is necessary to make the network model useful. As 
mentioned earlier, input-output-patterns are introduced to the network for it to learn the 
underlying physical relationship within the pattern. As an energy related example, consider 
Figure 2, where the ANN is shown as a black box to the left with gas turbine related 
parameters as inputs and outputs. To find the relationship between the inputs and the 
outputs, a hidden layer of neurons as well as weights between the input and hidden layer, 
and between the hidden and output layer has to be present. Before the training can start the 
values of the inputs and outputs have to be normalized. This due to that the magnitude of 
the different parameters otherwise would reflect on the values in the weight matrices, 
which could cause computational problems. 
 
When building the ANN-model, the values in the weight matrices are randomly initiated, 
which leads to the fact that when the inputs are passed through the network for the first 
time, the prediction of the outputs will be incorrect, i.e. errors between the calculated and 
the target output values are present. To find the right values of the weight matrices, a 
training procedure has to be carried out. When using the multi-layer, feed-forward neural 
network architecture, often the backpropagation learning algorithm is used. To be able to 
use this algorithm a cost- or error function has to be used. This error function could be the 
least mean square error function, which then has to be minimized during training for the 
best neural network performance. The backpropagation algorithm can then simply be said 
to update the weights by a backward pass of the gradient decent of the error function in 
respective to the weights. For more reading about the backpropagation learning algorithm, 
the text books by Haykin [8] and Bishop [7] is recommended as well as the theses by 
Olausson [11] and Arriagada [1]. 
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Figure 2, Example of a fully connected multi-layer, feed-forward neural network model                                        
(T: temperature, p: pressure, RH: relative humidity, m: mass flow, P: power,                                                                       

el: electricity and exh: exhaust fumes). 
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During the training, the number of neurons in the hidden layer is altered in a trial-and-error 
manner. Another parameter that is possible to vary during the training phase is the number 
of epochs that the input-output-patterns are presented to the network. The data that is 
available is often split into three sections; training data, cross validation data, and test data. 
The training data and the cross validation data is used to train and optimize the network, 
while the test data is unseen data that is used for final validation of the possibility of 
generalization of the neural network. By introducing all the input-output-patterns of the 
training data to the network, one epoch has been realized. The training patterns are then 
shuffled and introduced again, and so on through the whole training. If too many epochs 
are used during training, the network can become overtrained, which means that the 
generalization ability of the network is lost although the training error is small. By utilizing 
the cross validation data set to compare the training error with the generalization error, 
obtained with the cross validation data set, the network can be prevented from being 
overtrained. 
 

2.2.2 The final choice of network 
Once the network has been trained and the network has reached the acceptable error-limit, 
the weight matrices are fixed. The allowed magnitude of errors is up to the user to set, and 
are of course enormously dependent on the data that has been available during the training 
of the network. If the data are measurements from a real process, the network could never 
produce better results than the measurement error levels. This also goes for the width of the 
data that the training data withhold. If for instance measurements are available for ambient 
temperatures between 0 – 20 °C, the interpolation of network patterns between these limits 
are applicable. However extrapolation with the neural network has to be handled with care. 
Often some extrapolation is possible depending on the normalization of the data in the 
network, but it is preferable to have as broad range of data available already during the 
training. 
 
A fixed neural network contains the weight matrices, the normalization and de-
normalization vectors together with the transfer/activation functions, so the memory size 
needed for this fixed model is only a few kilobytes. This would make this type of model 
suitable for inclusion with the control- and/or log-system. The calculations that are carried 
out with neural networks are also very fast, since the calculations do not involve iterations 
of any kind [12]. The data is solely sent forward through the vectors, matrices and 
functions, producing the outputs. 
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3 Survey of Available Measurements 
 
In this section available measurements are investigated, as well as, a description of the 
Turbec T100 microturbine. This for the reader to understand the design of the CHP unit 
and what measurements that are available for ANN-modeling. 
 

3.1 Description of the Turbec T100 
The Turbec T100 microturbine is a combined heat and power (CHP) unit with a power 
production of 100 kWe. The complete physical setup of the CHP unit is shown in Figure 3. 
 

1. Generator
2. Gas turbine engine
3. Pipe from recuperator
4. Recuperator
5. Exhaust gas heat exchanger
6. Ventilation air outlet
7. Exhaust outlet
8. Water inlet
9. Hot water outlet
10. Power electronics
11. Pipe to recuperator
12. Oil pump
13. Buffer air pump
14. Cooling water pump
15. Control system
16. Combustion chamber
17. Air inlet
18. Air filter

 
Figure 3, Product description of the T100 microturbine [13]. 

 
This small-scale CHP unit measures 840 x 1920 x 2900 mm in volume and has the weight 
of 2 000 kg. Broadly this system consists of a gas turbine engine for power production 
(centrifugal compressor and a radial turbine), a heat exchanger network for heat production 
(recuperator and exhaust gas heat exchanger) together with piping and filters as well as 
power electronics, which all is fitted into the given volume. 
 
These types of small-scale CHP units do not have the possibility of carrying personnel 
costs, so today a control system is delivered with the unit, operating the system at full load 
(site level: 0 m above sea level, 15 °C, 60 % relative humidity and natural gas as fuel). The 
performance data for this unit at full load are as stated in Table 1. All engines considered in 
this report are utilizing Danish natural gas as fuel, but there is also a possibility of utilizing 
digester gas (> 18 MJ/Nm3) in these units. The bearings in these units are oil bearings, 
which mean that lubrication oil has to be cooled and pumped in the system.  
 
Now that the T100 CHP microturbine unit has been comprehensively described, regarding 
the measured parameters that will be discussed in section 3.2. 
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Table 1, Performance data for T100 [13]. 
 

Fuel gas pressure, bar(g) >6 
Electrical output*, kW 105 (±3) 
Electrical efficiency, % 30 (±1) 
Total efficiency, % 78 (±1) 
Thermal output (hot water), kW 167 (±5) 
Fuel consumption, kW 350 
Exhaust gas flow, kg/s 0.80 
Exhaust gas temperature, °C 85 
Shaft speed, rpm 70 000 
Noise level, dBA (at 1 meter) 70 
NOx-level, ppmv <15 
CO-level, ppmv <15 

 
Below in Figure 4, a schematic thermodynamic process scheme is shown with selected 
pressures and temperatures. 
 

1. Generator Î rotating permanent magnet, water-cooled, 2 oil-bearings
2. Inlet air
3. Combustor chamber Î lean pre-mix, electrical igniter for start
4. Air to recuperator
5. Compressor Î radial centrifugal design,
6. Turbine Î radial design,                °C,                 bar 
7. Recuperator Î close to atmospheric pressure,                     °C 
8. Exhaust gases Î °C
9. Exhaust gas heat exchanger Î gas-water, counter-current
10. Exhaust gas outlet Î °C
11. Hot water outlet
12. Water inlet

650, ≈inexhT
950≈inT 5.4≈inp

1:5.4≈π

270≈T

85≈T

 
Figure 4, Schematic process scheme of the T100 power and heat production                                        

(T: temperature, p: pressure, π: pressure ratio) [13]. 
 

                                                 
* Performance with a high pressure gas source. With a low pressure gas source a fuel gas compressor is needed, which 
changes the performance; net electrical power output of 100 (±3)kW, net electrical efficiency of 28.5 (±1)%, and net total 
efficiency of 76.5 (±1)% [13]. 
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3.2 Operational ‘everyday’ measurements  
The measurements that have been received are for totally nine microturbines. Below these 
CHP units are named together with the number of operating hours and at which hour the 
log of the engine was started according to the measurement-files. All these CHP units are 
identical regarding the withholding components. However, the ‘Dong-unit’ has been 
altered along the way and has some difference in the location of the components in the 
CHP unit casing. 
 
      Starting  Total number of 
      log-hour  operating hours 

T10018 Dong (DK)   1 400   20 283 
T10026 Kävlinge (S)   37   12 625 
T10095 Kastrup (DK)   262   5 264 
T10096 Kastrup (DK)   300   5 260 
T10107 Torpgården (S)  178   4 644 
T10108 Torpgården (S)  153   4 694 
T10109 Hastrup Venge (DK)  939   7 539 
T10110 Tigervej (DK)  4   3 140 
T10113 Stenlökke (DK)  4   975 

 
For each of these engines a log-file has been received, where the log-time approximately 
equals every 24 hours or everyday data. The parameters that are included in the daily log 
are: 
 

ENG_RUN_HOURS  Î Operating hours of the microturbine [h] 
TUR_OUT_TEMP Î Turbine outlet temperature [°C] 
OIL_INL_TEMP   Î Lubrication oil inlet temperature to the bearings [°C]  
ENG_SPE   Î Shaft speed [%] (nominal speed 70 000 rpm) 
AIR_INL_TEMP   Î Air inlet temperature [°C] 
HOT_WAT_TEMP  Î Hot water temperature [°C] 
AIR_FIL_PRE_DROP  Î Air filter pressure drop [mbar] 
GAS_PRE  Î Gas pressure of the fuel [mbar] 
ELE_POW_OUT_DEM Î Electric power – set point [kW] 
WAT_TEMP_DEM      Î Hot water temperature – set point [°C] 
WARNING  Î Warning signal (true/false) 
SnapshotDateTime Î Date of log (i.e. 07-jan-04) 
MachineName  Î Engine name (i.e. T10018 Dong) 
ELE_POW_OUT  Î Net electric output [kW] 
PROD_ELE_POW_MWH  Î Total electricity production – the MWh value** 
PROD_ELE_POW_KWH Î Total electricity production – the kWh value** 
NUM_OF_ENG_STARTS Î Number of engine starts 
FAULT_STOP  Î Engine stop due to engine fault (false/true) 

 
The locations of these measurement points have been drawn in Figure 5, where T equals 
temperature, p pressure and N shaft speed. This means that no flows are measured 
regarding mass or composition, and also no pressures around the compressor and turbine 
are available. 
 
                                                 
** These parameters are added to get the total electricity production for the whole lifetime of the microturbine.  
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To be able to use these measurements for building an ANN-model, the data have to be 
investigated further to exclude outliers, as well as snap shot measurements logged during 
startup and shutdown. 

Generator C E

Oil

Air

Fuel

Exhaust

Water

Rec

EGHE

T
∆p

T

N

T

T

p

C: Compressor

E: Expander

EGHE: Exhaust Gas 
Heat Exchanger

Rec: Recuperator

 
Figure 5, Location of the measurement points that are                                                                  

potentially useful for ANN-modeling. 
 

3.3 Everyday data for the DONG T10018 
Since the microturbine located at DONG is the microturbine that has been in operation for 
the longest time, this data was handled first. Showing the difficulty of handling data logged 
on a daily basis, the data was plotted against the log date. In Figure 6 – Figure 9 the 
obtained raw data is plotted for the air inlet temperature, the electric power production, and 
the turbine outlet temperature. From an ANN modeling approach the wide distribution of 
air inlet temperature is promising. However, when observing the power production and the 
turbine outlet temperature graphs it is obvious that some of the log points have to be 
excluded. The reason for these unlikely values is that the log of the machine is carried out 
at the same time each day, whether the machine is operating, starting, shutting down or at 
idle condition. 
 
The CHP unit is supposed to operate on full load and the engine is often operated over a 
number of days without any stop. To ensure that the measurements used during the training 
of the ANNs, the first and last measurement of each start are excluded. This would ensure 
that any startup and shutdown measurements are disregarded. Other exclusion limits that 
have been used further on in the modeling, as a measure of full load, are that at least the 
following additional criteria have to be fulfilled: 
 

9 The shaft speed has to be ≥ 80 % (100% equals 70 000 rpm) 
9 The gas pressure has to be ≥ 5 000 mbar 
9 The turbine outlet temperature has to follow the pattern given by the setup values, 

see Figure 10. These setup values have been chosen by Turbec since the torque is 
higher the lower the ambient temperature is, which the generator has problem to 
handle. 
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By performing this pruning of data, the outliers are considered as disregarded, as well as, 
are the startup or shutdown sequences.  
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Figure 6, Air inlet temperature distribution of the total log time for DONG T10018. 
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Figure 7, Electric power production distribution of the total log time for DONG T10018. 
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Figure 8, Turbine outlet temperature distribution of the total log time for DONG T10018. 
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Figure 9, Turbine outlet temperature as a function of the air inlet temperature                                 

for DONG T10018. 



Statistical Modeling and Diagnosis of Turbec T100 CHP units 

13 

580

590

600

610

620

630

640

650

-30 -20 -10 0 10 20 30 40

Air inlet temperature (°C)

Tu
rb

in
e 

ou
tle

t t
em

pe
ra

tu
re

 (°
C

)

 
Figure 10, Setup values for the turbine outlet temperature                                                                

as a function of the air inlet temperature. 
 

The DONG T10018 unit has also been going through some major overhauls and 
modifications over the time, which is visible in close-ups of the data-graphs. In Figure 11 –
Figure 13 the revised data are shown for the electric power, the turbine outlet temperature, 
and the air filter pressure drop. The major overhauls and modifications (a – h) have also 
been included in these figures. 
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Figure 11, Revised electric power data for DONG T10018                                                              

with marked overhauls and modification. 
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Figure 12, Revised turbine outlet temperature data for DONG T10018                                                      

with marked overhauls and modification. 
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Figure 13, Revised air filter pressure drop data for DONG T10018                                                         

with marked overhauls and modification. 
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The list of events, provided by Turbec AB, regarding the major overhauls and modifi-
cations are as follows: 
 
a) 15 August, 2001:  the combustion chamber is damaged, which lead to an 

inspection. The inspection showed damaged insulation inside the 
power module. A new combustion chamber was fitted. 

b) 27 August, 2001:  low output power, which lead to replacement of insulation in the 
gas turbine as well as in the CBP. A replacement of the 
recuperator is at sight. 

c) 17 September, 2001: low output power, which lead to an inspection at Turbec AB. The 
thermo couplings were replaced and the lower thermo coupling 
was moved further into the engine. The air intake pre-filter was 
also changed. 

d) 1 March, 2002: turbine backplate springs changed. Change of the Turbine outlet 
temperature thermocouple position. 

e) 28 October, 2002:  revision – the exhaust diffuser dimensions were changed 
f) 14 November, 2002:  scheduled maintenance. Both a new combustion chamber and a 

new fine air filter were fitted, and the course air filter was 
inspected. 

g) 1 July, 2003:  revision – the exhaust diffuser dimensions were changed  
h) 18 August, 2003:  18 000 hours service 
 
As can be seen in this list, there have been exchanging of components as well as service 
done on this engine. To be able to use this data straight ahead for process identification 
with ANN of the microturbine would be impossible. However, there are sections between 
the major events that are interesting (cÆd, fÆg, and hÆ) for degradation confirmation as 
well as for a future fault diagnosis situation. This data will hereby not be used as general 
basic data for the ANN-modeling of the microturbines.  
 
The next interesting set of data available as general basic data is the data for the two 
microturbines located at Kastrup (T10095 and T10096). 
 

3.4 Everyday data for Kastrup T10095 and T10096 
The data available for the two Kastrup units are considered to be more stable with fewer 
interruptions over time. However, the time series available is of approximately 6 500 hours, 
and hereby covers whole year. The range of the air inlet temperature measurements are in 
this case not as wide as was the case for the DONG unit, but still all the seasons are 
covered. 
 
The data for the Kastrup engines was revised according to the same limits as was the 
DONG-data, regarding shaft speed, power output and turbine outlet temperature. It was 
then decided that this data will be tested for ANN-modeling of the engines one by one, 
together and as general model of all microturbines (except the DONG unit and the unit in 
Kävlinge, where the latter also has experienced major changes over time). 
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The other everyday data-files of the remaining five, newer units have been browsed but are 
not further discussed here. 
 

3.5 Measurement probes and errors 
The measurement probes used in the Turbec T100 CHP units are low budget probes, since 
these units are supposed to be as cost-effective as possible. They are only calibrated before 
installation in the CHP unit, except the thermo couples measuring the turbine outlet 
temperature. These thermo couples are exchanged every other year (after 12 000 hours). 
This leads to the fact that the operation point could be changed, if a degraded element is 
changed. 
 
The estimated measurement errors that the available probes have, according to Turbec, is as 
follows: 
 
9 Electric power ± 1% 
9 Turbine outlet temperature ± 2 °C (Totally two thermo couples where the average 

value is used if the difference is not to large.) 
9 Air filter pressure drop ± 1% 

 
The measurement errors of the ambient temperature, gas pressure and shaft speed are 
considered to be very small. 
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4 Description of the Neural Network Models 
 
The ANN modeling has been carried out in the software NeuroSolutions. This choice was 
made since good experience has been obtained with this software for other applications. In 
this software it is possible to vary the number of hidden neurons as well as epochs as a 
parameter variation, and the best solution is saved automatically. 
 

4.1 Process identification models 
The ANN-model built up for the process identification of the T100 unit is as follows in 
Figure 14. 

Pel

Tinl_air

∆pair_filter

Tturb_out

Thot_water

pgas

N

Toil

Input layer

Hidden layer

Output layer

 
 

Figure 14, Starting model for the ANN for process identification of the T100 unit. 
 
This means that the only output predicted here is the power output and the rest of the 
available data is used as inputs. This choice was made since these parameters are 
considered to be controlled or otherwise influencing the power output. As mentioned 
earlier the first test carried out towards a generalized ANN-model is to train the network 
with the data for the Kastrup engines.  
 
The ANN training parameters** chosen are as follows: 
 
9 tanh (hyperbolic tangent) is chosen as transfer function in both the hidden and the 

output layer 
9 Normalization and de-normalization of data between -0.8 – 0.8  
9 The number of hidden neurons are varied between the number of inputs and 20 
9 On-line training is used (not batch) 
9 The number of epochs is varied between 0 and 5 000  
9 The learning rate is 0.5 for the hidden layer and 0.05 for the output layer 
9 Momentum (α) of 0.7 is introduced to stabilize the training 

 

                                                 
** For further explanations to these parameters, see references [1, 7, 8, 11]. 
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These training parameters will be used for all the following ANN-models if nothing else is 
declared. 
 

4.2 ANN-model for T10095 
Since the Kastrup engines are considered as individuals, the training was started with the 
revised data from only the T10095 engine. The model shown in Figure 14 was used in the 
first training session.  
 
Tests were also carried out, where the oil temperature and the hot water temperature were 
excluded as inputs. Also alteration of the transfer function in the output layer to a purelin 
was examined. The whole set of data for the T10095 was divided into three section; a 
training set, a cross validation set and a test set. This is done to be able to find the best 
generalization of the network. It is possible to train the network with tremendously low 
training error, but these networks are often overtrained. To check the cross validation error 
continuously, that is how good the trained network predicts unseen data, promise a more 
generalized network when the cross validation error is low. To choose the network 
architecture with the lowest cross validation error is called early stopping. However the 
final test is to pass the test data through the fixed network and find the true error of the 
network.  
 
The best results with these revised data was obtained for 13 hidden neurons, tanh transfer 
function in both execution layers, and when the inputs Toil and Thot,water were excluded. The 
number of epochs used during the training was 2466. The total maximum error for this 
network was 4.71 % and the average error was 1.26 %. This maximum error was found 
during the pass of the test data through the network. The average error for the test data was 
1.56 %, with 1 point above 4 % error, 2 points above 3 % error and 7 points above 2 % 
error. The total number of points used as test data here was 28. 
 

4.3 ANN-model for both T10095 and T10096 
The second step towards a generalized model for the T100 microturbine was to test ANN-
model created with the T10095 revised data, with the revised data for the second Kastrup 
engine (T10096). This test was carried out without success. The maximum error increased 
to approximately 18 % and there were a number of points over 10%. 
 
The new strategy was now to train a new network, utilizing both the data from the T10095 
and the T10096. The same ANN architecture given in section 4.1 was used but the 
parameters Toil and Thot,water was excluded also in this model. In this test the total maximum 
error became 13.36 % and the total average error was 2.18 %. The maximum error was 
once again found for the test data and the distribution of the errors became; 11 points above 
5 % error, 13 points above 4 % error, 19 points above 3 % error and 31 points above 2 % 
error. The total number of test points in this case was 72. 
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4.4 Measurement error propagation in an FFNN 
As mentioned in section 3.5 the measurement probes of the turbine inlet temperature, 
Tturb,out, the pressure drop over the air filter, ∆pair,and the electric power output, Pout have 
unavoidable uncertainties. These unavoidable uncertainties are often declared as a margin 
of error. So if measurement errors are present for the input parameters a model, these will 
propagate through the model. This propagation will influence the modeled power output, 
which already has an error margin. Is it then possible to find this influence, mapping the 
input-output relationship between the parameters. 
 
If the model is of physical nature there are measures to handle the error propagation. For 
instance if two measured parameters are multiplied with each other, the margin of error of 
the output will be a sum of the former two margin of errors. However, in the case of neural 
networks, which is a fully connected network, all input parameters influence the outputs 
and the input values are weighted. This brings forward an interesting situation of how this 
is to be solved. 
 

4.4.1 Error propagation in the Kastrup T10095 network 
To estimate the error propagation in an FFNN, the best network for the Kastrup T10095 
engine was used, i.e. five inputs (Tair,inlet, ∆pair,filter, Tturb,out, N, and pgas), one output (Pout), 
and 13 hidden neurons. The fixed network was tested by introduction of the margin of error 
to the test set used to validate the network. This means that the turbine outlet temperature 
and the pressure drop over the air filter are modified with ± 2°C and ± 1%, respectively, see 
Table 2 and equations (1) and (2). 
 

Table 2, Setup of the manipulation of the test set 

Test set number ∆{Tturb,out (°C)} ∆{∆ pair,filter (%)} 
Reference  
(original test set) 

0 0 

1 +2 0 
2 -2 0 
3 0 +1 
4 0 -1 
5 +2 +1 
6 +2 -1 
7 -2 +1 
8 -2 -1 

 
  { }outturboriginaloutturbtestoutturb TTT ,,,,, ∆+=     (1) 
  { }filterairoriginalfilterairtestfilterair ppp ,,,,, ∆∆+∆=∆    (2) 
 
The first test carried out was for a network that was not as good as the best network 
presented for the T10095. Both the maximum and the average error of this network was 
higher than for the best network, presented in section 4.2. The results of this test are 
depicted in Figure 15 and Figure 16, showing the absolute error and the percentage error 
respectively. The error bars for the measurements of the power (± 1%) are also shown in 
Figure 15. 
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Figure 15, Influence of the modeled electric power output with an arbitrary FFNN for the T10095 

engine. The turbine outlet temperature and the pressure drop of the air filter are manipulated within 
the margin of measurement error. 
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Figure 16, Distribution of the percentage error for the arbitrary FFNN, when the turbine outlet 

temperature and the pressure drop of the air filter are manipulated within the margin of 
measurement error. 
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As can be seen in Figure 15 and Figure 16, the distribution of the estimated modeled results 
of the measurement points is rather scattered. Even with the error bars, the ANN estimation 
is often out of range. This is of course due to the non-optimized network. However, to be 
able to draw any conclusions of the individual contributions to the error of the separate 
modifications of the temperature or the pressure drop is almost impossible. One 
observation that can be made is that the change in temperature contributes more to the 
deviation from the reference value than the pressure drop. It is also obvious that the 
combinations of measurement errors in most cases add up and move the modeled power 
output further away from the reference value. This means that if the measurement error of 
both the temperature and the pressure drop is positive, they will deviate more together from 
the reference ANN value than stand alone. This is also valid in an opposite way for 
negative measurement error deviations. However, this does not say anything about the 
relative deviation from the actual measurements, since the ANN reference value could be 
both higher and lower than the calculated ANN reference value. 
 
Looking at the percentage errors in Figure 16, it can be seen that large reference errors of 
the neural network often widens the influence of the measurement errors of the inputs. So it 
seems that if the neural network is optimized, the scattering of the distribution will decrease 
and thereby also the influence of measurement errors. 
 
The same manipulation of the test set was made when testing the more optimized fixed 
network for the T10095 engine. The results of this test are shown in Figure 17 and Figure 
18. 
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Figure 17, Influence of the modeled electric power output with the semi-optimized FFNN for the 

T10095 engine. The turbine outlet temperature and the pressure drop of the air filter are 
manipulated within the margin of measurement error. 
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Figure 18, Distribution of the percentage error for the semi-optimized FFNN, when the turbine 
outlet temperature and the pressure drop of the air filter are manipulated within the margin of 

measurement error. 
 
As can be seen in Figure 17 and Figure 18 the scattering has now decreased significantly, 
suggesting that a better trained network also is less influenced by measurement errors in the 
input parameters. However, to be able to set up an empirical equation of the measurement 
error propagation at this time is not possible. This could of course be considered as an 
interesting work for the future that could be very useful in a future sensor and fault 
diagnosis system. Perhaps an improvement would be obtained if the error margins were 
introduced already during the training of the network to see if there are any off-sets of the 
sensors, measuring the turbine outlet temperature and the pressure drop over the air filter. 
 

4.5 Conclusions 
The conclusion that can be drawn from the process identification of the T100 unit is that 
the data received for the microturbines are to poor to be able to train a general network, or 
it could also be that the individual engines are to different to ever get a general model of all 
T100 microturbines. It seems like all engines have to be trained individually in order to use 
the ANN model for condition monitoring. One result that was obtained during this study 
was that ANN could predict the system with a total average error of 1.26 % which is close 
to the measurement error of 1% for the electric power production. However, since the 
predicted errors in average are over 1% it might be impossible to combine the ANN model 
with the existing control system. This is at least a conclusion that other gas turbine 
manufacturing companies have drawn for their gas turbines and some of them are presently 
using this error limit for their engines. 
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To formulate a general model that could handle the total fleet of microturbines was not 
possible in this study; the engines have to be trained individually. By using only data for 
one engine during training and then testing this model for other engines did not have an 
encouraging result at all. By using a mix of engine data, i.e. data from different engines 
lumped together, improved the model slightly, but not enough for the model to be used as a 
general model.  
 
An investigation of the measurement error propagation was also made in order to se how 
this influences the ANN model. A general conclusion that can be drawn from this 
investigation is that the more accurate the ANN model is the less sensitive it is for 
unavoidable measurement errors. 
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5  Concluding Remarks 
 
The objective with this report was to summarize the measurements made accessible to LTH 
(9 CHP microturbine units) and to investigate their applicability for modeling with 
Artificial Neural Networks (ANNs). This modeling should be looked upon as a first 
necessary stage in a future three-stage rocket, where process identification, sensor 
validation, and fault diagnosis all are to be carried out by ANNs.  
 
The data that was more thoroughly investigated was the data for the DONG-engine, since 
this unit had the longest operational time, and the data for both the Kastrup-engines, since 
these units seemed to be the most stable and unchanged ones. During the investigation of 
the raw data it was obvious that major changes had been done to the DONG-engine. This 
data was hereby excluded as considerable data for training of a general ANN model. 
However, since a number of overhauls have been made this data is regarded as potentially 
useful for degradation studies and for a future fault diagnosis system. For further comments 
on this, see section 0. 
 
The two CHP units located at Kastrup airport, have until the date of today been operating 
for fully 6 500 hours, i.e. a bit longer than a year. These microturbines as well as the other 
engines in the report are constantly operated in full load. The accessible data for these two 
engines was used to try to formulate a general ANN model of the Turbec CHP unit, T100. 
This choice was made since no major overhauls have been made up till now and they have 
been operating relatively smoothly the whole lifetime. The result obtained during the ANN 
modeling of these two engines was that no general ANN model could be built for the two 
units. Each engine has to be modeled individually to obtain an acceptable average error of 
fully 1%. The final ANN architecture used to model the CHP unit used five inputs (Tair,inlet, 
∆pair,filter, Tturb,out, N, and pgas) and one output (Pout). This means that the hot water 
temperature and the oil temperature was excluded, or pruned, in the model, since they did 
not contribute with additional information to the model. This however does not mean that 
these measurement probes could be excluded from the system. They have the task to 
guarantee the hot water temperature to the district heating system and to keep the oil 
temperature at an acceptable level, regarding viscosity among other things.  
 
It is the authors’ opinion that to obtain an ANN model with lower error, probably 
additional parameter measurements have to be included. Perhaps measurements of mass 
flows of air and gas, and inlet temperature of the district heating water, and gas 
composition could be useful. This might even lead the way to the possibility of a general 
ANN model for the entire fleet of microturbines. By obtaining a modeling error less than 
1%, the ANN model could be directly connected with the existing control system. As 
shown in the report, the influence of the measurement errors of the input parameters to the 
ANN have less effect the better the ANN model is trained. Having an ANN model with 
calculated errors less than 1% would considerably decrease the influence of these 
measurement errors. 
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6  Future Work 
 
The ANN modeling carried out in this report could be considered exaggerated, but it has a 
purpose in the long run. Since this model could be considered as the first step in a three-
stage rocket, it will be very useful for a future condition monitoring system (CMS), 
including fault diagnosis. 
 
Since microturbine CHP systems, such as T100 from Turbec, do not have the possibility to 
carry personnel costs, and since the maintenance is to be kept to a minimum, a well 
functioning CMS with possibility of fault diagnosis must be considered a high priority. 
ANN is one possible tool that could be used to combine process identification, sensor 
validation, and fault diagnosis, all included. Regarding the ANN-model that would be 
included in the engine once it is delivered, this could be pre-built with data obtained from 
the performance tests. To be able to co-operate with the manufacturer of the microturbines 
and to utilize the data base of performance tests of new-and-clean engines, perhaps a 
general ANN can be built and sent with the delivered engine. Then to use on-line training 
continuously after a number of operation hours (> a month of operation at a time) the 
ANN-model can be improved for each engine, taking the individual and local condition 
into account. It could also be a possibility to ‘optimize’ the sensors that are to be mounted 
with the delivered engine, by using ANN and pruning. To be able to train the ANN with a 
large number of measurement parameters and exclude them one by one, would establish 
the optimal sensor setup for ANN modeling, in the same time as redundant measurement 
probes are excluded and hereby reducing costs as well as unnecessary measurement errors.  
 
To be able to formulate an all-inclusive CMS, fault formulation together with modeling or 
measuring of the same have to be carried out. This is considered as possible if a better 
model of the system is prepared, either by utilizing the existing physical model from 
Turbec or by additional measurement logs from the existing CHP units. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Statistical Modeling and Diagnosis of Turbec T100 CHP units 

26 

References 
 
1. Arriagada J., 2003, On the Analysis of Fault-Diagnosis Tools for Small-Scale Heat and 

Power Plants, Doctoral Thesis, Department of Heat and Power Engineering, Lund 
University, Sweden. 

2. Arriagada J., Olausson P., and A. Selimovic, Artificial neural network simulator for 
SOFC performance prediction, J. of Power Sources, Vol. 112, pp. 54–60, 2002.  

3. Arriagada J., Costantini M., Olausson P., Assadi M., and T. Torisson, Artificial Neural 
Network Model for a Biomass-Fueled Boiler, Proceedings of the ASME Turbo Expo, 
Atlanta, USA, June 16–19, 2003. 

4. Arriagada J., Genrup M., Loberg A., and M. Assadi, Fault Diagnosis System for an 
Industrial Gas Turbine by Means of Neural Networks, Proceedings of the ASME IGTC 
2003 Tokyo, Japan, 2003. 

5. Assadi M., Mesbahi E., Torisson T., Lindquist T., Arriagada J., and P. Olausson, A 
Novel Correction Technique for Simple Gas Turbine Parameters, Proceedings of the 
ASME Turbo Expo, New Orleans, USA, June 4–7, 2001. 

6. Azimian A. R., Arriagada J., and M. Assadi, Generation of Steam tables using Artificial 
Neural Networks, Journal of Heat Transfer Engineering, Taylor & Francis, Vol. 25, No. 
2 , pp. 41–51, March 2004. 

7. Bishop C.M., 1995, Neural Networks for Pattern Recognition, Oxford University Press 
Inc., USA. 

8. Haykin S., 1999, Neural Networks a comprehensive foundation, Prentice-Hall Inc., 
USA. 

9. Mesbahi E., Assadi M., and T. Torisson, An Online Remote Sensor Validation and 
Condition Monitoring System for Power Plants, Proceedings of CIMAC Congress 
2001, pp. 833–842, Hamburg, Germany, 2001. 

10. Optimised Microturbine Energy Systems (OMES), Annex I “Description of work”, 
Proposal No NNE5-1999-20128, 2001. 

11. Olausson P., 2003, On the Selection of Methods and Tools for the Analysis of Heat and 
Power Plants, Doctoral Thesis, Department of Heat and Power Engineering, Lund 
University, Sweden. 

12. Olausson P., Häggståhl D., Arriagada J., Dahlquist E., and M. Assadi, Hybrid Model of 
an Evaporative Gas Turbine Power Plant Utilizing Physical Models and Artificial 
Neural Networks, Proceedings of the ASME Turbo Expo, Atlanta, USA, June 16–19, 
2003. 

13. Turbec AB, Technical description – T100 microturbine CHP system, Brochure D10293 
Technical Description Ver 5.0, Sweden. 
 

 



SE-205 09 MALMÖ • TEL 040-24 43 10 • FAX 040-24 43 14
Hemsida www.sgc.se • epost info@sgc.se


