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Abstract 

Artificial neural networks have been integrated and tested for online condition 
monitoring in the computer system of an existing combined heat- and power plant. An 
accompanying graphical user interface has also been developed including an economics 
part for thermoeconomic optimization of operation. 
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Summary 

The project aim is to model the hybrid plant at Västhamnsverket in Helsingborg using 
artificial neural networks (ANN) and integrating the ANN models, for online condition 
monitoring and thermoeconomic optimization, on site. The definition of a hybrid plant 
is that it uses more than one fuel, in this case a natural gas fuelled gas turbine with heat 
recovery steam generator (HRSG) and a biomass fuelled steam boiler with steam 
turbine. The thermoeconomic optimization takes into account current electricity prices, 
taxes, fuel prices etc. and calculates the current production cost along with the 
“predicted” production cost. The tool also has a built in feature of predicting when a 
compressor wash is economically beneficial. The user interface is developed together 
with co-workers at Västhamnsverket to ensure its usefulness. The user interface 
includes functions for warnings and alarms when possible deviations in operation occur 
and also includes a feature for plotting parameter trends (both measured and predicted 
values) in selected time intervals.  
 
The target group is the plant owners and the original equipment manufacturers (OEM). 
The power plant owners want to acquire a product for condition monitoring and 
thermoeconomic optimization of e.g. maintenance. The OEMs main interest lies in 
investigating the possibilities of delivering ANN models, for condition monitoring, 
along with their new gas turbines.  
 
The project has been carried out at Lund University, Department of Energy Sciences, 
with support from Västhamnsverket AB and Siemens Industrial Turbomachinery AB. 
Västhamnsverket has contributed with operational data from the plant as well as support 
in plant related questions. They have also been involved in the implementation of the 
ANN models in their computer system and the development of the user interface. 
Siemens have contributed with expert knowledge about their SGT800 gas turbine. 
 
The implementation of the ANN models, and the accompanying user interface, in 
Västhamnsverkets computer system was carried out successfully. With the developed 
tool plant condition can be monitored while at the same time possible deviations, such 
as degradation, are economically evaluated.  
 
Keywords: ANN modelling, thermal power plants, condition monitoring, 
thermoeconomic optimization, gas turbine 
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1 Introduction 

1.1 Background 

The project, which is co-financed by Värmeforsk and Svenskt Gastekniskt Center 
(SGC), concerns online condition monitoring and thermoeconomic optimization of 
operation for the hybrid plant at Västhamnsverket in Helsingborg, Sweden. For this 
purpose artificial neural network (ANN) models have been integrated in 
Västhamnsverkets computer system together with the development of a graphical user 
interface (GUI). The GUI includes a tool for parameter analysis, warning- and alarm 
indicators, analysis of production cost and a tool for economic evaluation of compressor 
washes.  
 
The combined heat- and power (CHP) plant consists of a modern Siemens gas turbine 
(SGT800), a heat recovery steam generator (HRSG) and a biomass fuelled boiler. Steam 
generated by the boiler and HRSG expands in one common steam turbine. 
 
Condition based maintenance requires continuous monitoring of the CHP plant 
components. Deviations from expected data pattern could indicate e.g. a faulty 
component or degradation whereupon the operators are alerted to take action. Early 
detection of faults leads to reduced costs for maintenance.   
 
This project forms a part of a series of projects conducted in collaboration between 
Lund University, Västhamnsverket and Siemens Industrial Turbomachinery AB. 

1.2 Description of the research area 

ANN modelling of power plant systems is a relatively new area although ANN has been 
used within other disciplines for some time. The past years research studies, within in 
this field, have been conducted at the division of Thermal Power Engineering at Lund 
University. Several areas of implementation have been identified, e.g. simulation of 
operation, condition monitoring, thermoeconomic analysis, sensor validation and fault 
diagnosis. The present project is a continuation of previous studies. 

1.3 The purpose of the research assignment and its role within the 
research area 

Increased availability, reduced cost for maintenance and more efficient maintenance is 
the main interest for this research. By linking historical operational data to analysis of 
plant condition, optimization of maintenance and performance of the plant is possible. 

1.4 Goal and audience 

The goal of the project is to create a product fully integrated at the plant 
(Västhamnsverket) together with a graphical user interface, for condition monitoring 
and thermoeconomic optimization of operation. The product can be used as a basis for 
transition from time based maintenance to condition based maintenance.  
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The target groups are the power plant owners and the OEMs. The power plant owner’s 
interest lies in receiving a product that can be used for condition monitoring and 
thermoeconomic optimization of e.g. maintenance. The OEMs are interested in 
investigating the possibility integrating ANN models in the control system of new gas 
turbines.  
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2 The CHP plant 

The plant, Västhamnsverket, is located in Helsingborg, Sweden and is owned by 
Öresundskraft AB. It is a unique multi-fuel CHP plant. The plant consists of a gas 
turbine, a heat recovery steam generator (HRSG) and a steam cycle consisting of a 
biomass fired boiler, a steam turbine, pre-heaters and two condensers. These are the 
main components of the plant as shown in Figure 1.  
 

 
Figure 1. Schematic layout of the hybrid plant 

 
The boiler was installed by Götaverken Ångteknik, Sweden in 1982. The boiler has the 
capability to use oil, coal and biomass as fuels. The main operating parameters of the 
boiler are, maximum pressure: 130 bar, maximum temperature: 540°C and steam-flow 
rate: 82 kg/s. It delivers power as well as district heat. In the year 1999, a gas power 
plant consisting of a gas turbine and a heat recovery steam generator was added to the 
existing steam plant. Thus the CHP plant presently operates as a ‘hybrid’ one. It 
generates steam from the waste heat of the gas turbine in the HRSG as well as in the 
boiler using biomass as fuel. The steam from the HRSG and the boiler expands in one 
common steam turbine. By adding a gas power cycle to the existing steam cycle, total 
power output and district heat were increased significantly. The system solution is 
unique and has a high alpha-value (ratio between produced electricity and heat) of 0,68. 
In total approximately 125 MWe and 186 MWth are produced. 
  
The SGT800 (formerly known as GTX100) gas turbine was manufactured by Alstom 
Power AB (presently Siemens Industrial Turbomachinery AB) in Sweden. Its pictorial 
view is shown in Figure 2. The gas turbine was designed to produce up to 44 MW 
power with a thermal efficiency of 37 %. It is uniaxial with the generator on the ‘cold’ 
side (i.e., cold end drive). The compressor consists of 15 stages with a pressure ratio of 
around 20 and a mass flow of 130 kg/s. In the combustion chamber 120 MW fuel is 
burned, generating 100 MW of turbine work. Due to the very high temperatures after 
the combustion chamber the first two stages of the turbine are cooled with compressor 
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air. The gas turbine is optimized for combined cycle operation and therefore a relatively 
high exhaust gas temperature is maintained.  

 

 
Figure 2. Siemens SGT800 gas turbine 

 
The SGT800 gas turbine at Västhamnsverket was the production prototype, co-owned 
by Öresundskraft and Siemens, and has been used for component test and development. 
Due to this it has been subject to many component exchanges etc., thus a change in 
behavior during its years of operation might be expected. Natural gas is the main fuel 
used in this gas turbine. The gas turbine runs at full load during most of the time of its 
operation otherwise its power output is set to 30 MW. The gas turbine is limited to a 
lower power output when only the generated heat is desired. It is however only 
economically beneficial to operate the gas turbine during the winter months due to local 
conditions, such as ambient temperature, electricity and gas prices. The gas turbine is 
also equipped with an anti-icing system which preheats the inlet air to avoid harmful ice 
formation during simultaneous cold and humid conditions. The anti-icing system is 
normally in operation when the ambient temperature is somewhere between -5°C and 
+5°C while at the same time the relative humidity exceeds 80%. When preheating the 
air the gas turbine efficiency and power output decreases due to decreasing air density. 
In this power plant the inlet air for the gas turbine is preheated in a heat exchanger using 
district heating water.  
 
Till May, 2007, fifty two such SGT800 machines were sold of which 24 are in 
commercial operation. Two of these machines have more than 45 000 EOHs and 17 
machines have more than 20 000 EOHs. Out of the total fifty two machines, ten 
machines are operating in gas turbine power plants, seventeen in co-generation plants 
and twenty five in gas-steam combined power plants. 
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3 Brief  basics of  Artificial Neural Network (ANN) 

Artificial Neural Network (ANN) is a simulation tool that mimics the neural structure of 
the human brain which basically learns from experience. In contrary to traditional 
mathematical models, which are programmed, ANN learns the relations between 
selected input and output parameters through an iterative process called training. The 
basic requirement is that reliable data, for selected input- and output parameters, is 
available for training. 
 
ANN consists of a number of interconnected artificial neurons with linear or non-linear 
transfer functions and is well capable of predicting non-linear behaviour of a system. 
The multi-layer feed forward network is the type of network which has been used 
during this study. It consists of an input layer, one or more hidden layer(s) and an output 
layer. However, there is no impediment to having more than one hidden layer, since it 
has been proved that one layer with hidden neurons is enough to approximate any 
continuous function if it only has a sufficient number of units. 
 
Once the inputs are presented to the network they will be multiplied by their adjustable 
weights and in each processing element summed and passed through a transfer function 
in order to produce outputs. The data used as inputs is transmitted through the network, 
layer by layer, and a set of outputs is obtained. Errors are generated by comparing these 
outputs with the desired outputs. The errors are then used for updating the weights 
before another set of inputs are transmitted through the network. The mean squared 
error (MSE) is calculated between each epoch (iteration) and the training is terminated 
when the MSE is satisfactory low. When training is completed the weights are fixed and 
the model is ready to predict outputs from previously unseen data, i.e., generalization.  
 
Experience accumulated at the department over the years has shown that using the non-
linear tangent hyperbolicus transfer function is suitable when modeling power plant 
systems. When training, all neural networks have been optimized regarding the number 
of neurons in the hidden layer. 
 
 



 

6 

4 ANN modeling of  the hybrid plant 

The system was divided into its basic components, i.e. gas turbine, HRSG, boiler and 
steam turbine, where each component was modeled separately. Data from the hybrid 
plant was delivered as five minute averages, covering three months of operation. A 
baseline was established and data recorded after this was considered as healthy and 
thereby suitable for ANN training. However, before using any data for training it has to 
be filtered and outliers, etc. removed. Furthermore, all transient operation was also 
removed since five minute average data only allows the steady state operation to be 
modeled. Selection of input and output parameters, for the individual models, was based 
on the availability of reliable plant data as well as real life needs. All ANN models have 
been subject to a sensitivity analysis in order to assess which input parameters that are 
of significance to respective model.  

4.1 Gas turbine model; structure and performance 

When operating at full load the ambient conditions (temperature, pressure) determines 
the gas turbine’s performance. Hence, using the ambient conditions as input parameters 
to the gas turbine ANN model is natural. However, since the gas turbine is set to run at 
either full load or limited to 30 MW an input parameter representing these modes is 
necessary. The two discrete load cases were represented by two ‘switches’, i.e., ‘1’ and 
‘0’. This enabled the neural network to differentiate between the two modes of 
operation based on load. Another ‘real life’ issue was that of harmful ice formation in 
the intake manifold during simultaneous cold and humid local ambient conditions. To 
avoid this, an anti-icing system is used to preheat the air before the compressor. The 
anti-icing operation is also a discrete mode and represented by another set of switches 
of ‘1’ and ‘0’ in the ANN model. A complete list of input and output parameters for this 
ANN is shown in Table 1. The use of relative humidity as an input was redundant since 
its effects on gas turbine performance was marginal. It should be reminded however, 
that the relative humidity has large effect on ice formation. This ANN model was 
successful in prediction of all output parameters with very small errors, seen in Table 2. 
 
Table 1. Input and output parameters for the gas turbine model  
 

Inputs  Outputs  
Operation mode [1 or 0] Power output [MW] 
Anti-icing mode [1 or 0] Compressor inlet pressure [kPa] 
Ambient temperature [°C] Inlet guide vanes angle [%] 
Ambient pressure [kPa] Bleed temperature [°C] 
  Compressor outlet pressure [MPa] 
  Compressor outlet temperature [°C] 
  Mass flow rate of fuel [MJ/s] 
  Mass flow rate through turbine  [kg/s] 
  Exhaust gas temperature [°C] 

 
 
 



 

7 

 
Table 2. Error distribution for predictions 
 

Parameter <1% 1-2% 2-4% >4% 
Power output 7179 58 1 1 
Compressor inlet pressure 7239 0 0 0 
Inlet guide vanes angle 6489 558 183 9 
Bleed temperature 7142 90 6 1 
Compressor outlet pressure 7234 3 2 0 
Compressor outlet temperature 7223 16 0 0 
Mass flow rate of fuel 6649 579 8 3 
Mass flow rate through turbine 7229 8 2 0 
Exhaust gas temperature 7239 0 0 0 

 
 
To further visualize the prediction accuracy of the gas turbine ANN a number of plots 
are shown in Figure 3, Figure 4 and Figure 5. In all figures the color black represents 
measured values, green predicted values and blue the prediction error. The measured 
and predicted values are read of the left y-axis and the error of the right y-axis. The 
number of data points is seen on the x-axis, where each point represents five minutes.  
 
For the full load case the IGVs are fully opened and hence the angle is constant, the 
power varies with the ambient conditions as well as the compressor outlet pressure. 
When the gas turbine is set to run at 30 MW the power output is instead constant while 
the IGV angle and compressor outlet pressure varies with the ambient. Despite these 
differences the prediction accuracy, of the ANN, is very high in every case.  
 

 
Figure 3. IGV Angle; prediction accuracy 
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Figure 4. Power output; prediction accuracy 

 

 
Figure 5. Compressor outlet pressure; prediction accuracy 
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4.1.1 Comparison of different gas turbine models 

In previous projects (year 2001) a gas turbine model based on simulation data was 
developed. In this section a comparison between that ANN model and the ANN model 
described in chapter 4.1 is performed to assess whether using simulation data instead of 
operational data is suitable for ANN training. This could be a way to tackle the problem 
of non-availability of data for ANN training, especially at the beginning of gas turbine 
operation. The data was produced, in defined intervals and resolution, using Siemens 
gas turbine design program. 
 
For the comparison values of input parameters from the plant was presented to both 
ANN models and values of common outputs parameters were compared. Predictions of 
power output and exhaust gas temperature by these two ANNs along with measured 
values of them are shown in Figure 6 and Figure 7 respectively. The first ANN model, 
based on simulation data is referred to as ANN 1 and the second model based on 
operational data as ANN 2. On the x-axis the number of data points was used as 
parameter where each point represents a five minute average value. As expected, the 
ANN model based on operational data predicted the power and the exhaust gas 
temperature with better accuracy as shown in Figure 6 and Figure 7. The prediction of 
the ANN model based on simulation data was not impressive apparently. The difference 
in predictions by these models was however expected since the gas turbine had been 
operating for several years while the simulation data represented the performance of a 
new gas turbine. The ANN based on simulation data predicted higher power outputs 
than those actually measured and for exhaust gas temperature it was just the opposite. 
During the years (2001-2006) when simulation data was generated (2001) and the 
operational data was collected (2006) several overhauls, replacements of components 
etc. occurred. The gas turbine performance degradation was thus expected which partly 
corresponds to the results shown in these figures. To compare the trends of predictions 
by these two ANNs, plots of predictions by one model is shifted vertically to check the 
matching of these two plots. These plots are shown in Figure 8 and Figure 9. Obviously 
for these figures, plots of predictions by two ANNs are represented by different axes in 
vertical directions as shown. Even for these plots, predictions by the two ANNs did not 
overlap. Apparently this seemed to be a failure of the use of synthetic data. However, it 
was revealed that the mode of operation changed with respect to anti-icing during this 
period. There was no consideration of anti-icing in the simulated data. Moreover effect 
of ambient pressure was not considered in simulated data either. Thus comparison of 
predictions by the two models during normal mode of operation without anti-icing 
would be more meaningful. It was identified that a section of data points, i.e., data 
points 4050 to 5200 were during operation without anti-icing. Plots were made for these 
data points only as shown in Figure 10 and Figure 11, also with vertical shifting. In 
these plots, predictions by the two models match very closely for exhaust gas 
temperature. However, there exists still some difference for power predictions.  The 
reason behind this difference for power and exhaust gas temperature plots are due to the 
consideration of ambient pressure as one input parameter for the second model though it 
was not used for the first one. Variations of ambient pressure do not affect the exhaust 
gas temperature significantly though it was expected to influence power output. This 
can be demonstrated through adjusting the power output predictions from ANN 1 
according to variations in ambient pressure by applying Equation 1. The results are 
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shown in the final figure, Figure 12, and confirm that the difference in power output 
predictions (seen in Figure 11) between the two ANNs is due to the fact that ambient 
pressure was not included as an input to the first ANN (based on synthetic data). Index i 
in Equation 1 represents the data points, pISO is the constant atmospheric ISO pressure 
(1,013bar).  
 

ISO

iambient
iANNiadjusted p

p
PP ,

,1 , ⋅=   (1) 

 
Thus it was concluded that the model developed using synthetic data was equivalent to 
that using operational data under identical operational condition. However, the vertical 
shift in prediction by one model was partly due to the degradation of the plant as the 
second model was developed using data after about five years of operation. Another 
reason for the vertical shift is the fact that this gas turbine was, as mentioned earlier, the 
production prototype and thereby subject to many component exchanges etc. However, 
interesting to notice is, despite the circumstances, that the generalization capability of 
the ANN based on synthetic data is very accurate. This indicates that no retraining of 
ANN models is needed due to e.g., overhauls or component exchanges. This study was 
successful to establish the possibility of using synthetic data for developing ANN model 
for condition based maintenance of gas turbines from the beginning of its operation. 
Furthermore, the results of this study add value to previous studies regarding fault 
diagnosis tools based on ANN and simulated faults. 
 

 
Figure 6. Measured and predicted values of power 
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Figure 7. Measured and predicted values of exhaust gas temperature 

 

 
Figure 8. Measured and predicted values of power, with a vertical shift 
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Figure 9. Measured and predicted values of exhaust gas temperature, with a vertical shift 

 

 
Figure 10. Measured and predicted values of exhaust gas temperature, with a vertical shift and 

without anti icing operation 
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Figure 11. Measured and predicted values of power, with a vertical shift and without anti icing 

operation 

 

 
Figure 12. Measured and predicted values of power, with a vertical shift, without anti icing 

operation and with ISO corrected predictions from ANN 1 
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4.2 HRSG model; structure and performance 

The input parameters for the HRSG ANN are very much similar to the ones in the gas 
turbine ANN due to the fact that the gas turbine governs the performance of the HRSG. 
The only difference is that the HRSG is also affected by the district heating return- and 
delivery temperatures. Both steam, for the steam turbine, and heat, for the district 
heating grid, is produced in the HRSG. 
 
Table 3. Input and output parameters for the HRSG model  
 
Inputs  Outputs  
Operation mode [1 or 0] Volume flow rate of district heating water [m3/h] 
Anti-icing mode [1 or 0] Mass flow rate of steam [kg/s] 
Ambient temperature [°C] Superheater 1 steam exit temperature [°C] 
Ambient pressure [kPa] Superheater 2 steam exit temperature [°C] 
District heating return temperature [°C] Stack exhaust gas exit temperature [°C] 
District heating delivery temperature [°C] District heating economizer heat [MW] 
 
 
The prediction accuracy is seen in Table 4, Figure 13 and Figure 14. The errors are 
slightly higher than for the gas turbine model but still very acceptable. The reason for 
the slightly higher prediction errors could e.g. be lower sensor accuracy.  
 
Table 4. Error distribution for predictions 
 

Parameter <1% 1-2% 2-4% >4% 
Volume flow rate of district heating water 3387 2225 1188 165 
Mass flow rate of steam 5757 1019 165 24 
Superheater 1 steam exit temperature 6949 16 0 0 
Superheater 2 steam exit temperature 6965 0 0 0 
Stack exhaust gas exit temperature 6481 464 17 3 
District heating economizer heat 4729 1711 453 72 
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Figure 13. Volume flow rate of district heating water; prediction accuracy 

 

 
Figure 14. Mass flow rate of steam; prediction accuracy 
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4.3 Boiler model; structure and performance 

Only two input parameters, temperature and pressure of the feedwater, are needed for 
the boiler model to predict e.g. the steam properties and mass flow rate of pellets.  
 
Table 5. Input and output parameters for the boiler model 
 

Inputs  Outputs  
Feedwater temperature [°C] Mass flow rate of steam [kg/s] 
Feedwater pressure [MPa] Steam temperature [°C] 
  Mass flow rate of pellets [kg/s] 
  Economizer heat [MW] 

 
 
The prediction accuracy is seen in Table 6 and Figure 15. 
 
Table 6. Error distribution for predictions 
 

Parameter <1% 1-2% 2-4% >4% 
Mass flow rate of steam 2628 229 25 18 
Steam temperature 2332 517 51 0 
Mass flow rate of pellets 2462 400 30 8 
Economizer heat 157 168 389 2186 

 
 

 
Figure 15. Mass flow rate of pellets; prediction accuracy 

 
 

0

2

4

6

8

10

12

14

16

0 100 200 300 400 500 600 700 800 900 1000

Mass flow rate of pellets 
[kg/s]

0

2

4

6

8

10

12

14

16

Error [%]Measured Predicted Error



 

17 

4.4 Steam turbine model; structure and performance 

For prediction of power output and produced heat in the district heating condensers a 
number of input parameters are needed. The most obvious input parameters are the 
steam properties, both from the HRSG and the boiler, along with district heating return- 
and delivery temperatures. The heat generated in the economizer and heat pump are 
added as inputs since they are located on the same districts heating circuit as the 
condensers and thereby also affect the system. The complete list of input and output 
parameters is seen in Table 7 
 
Table 7. Input and output parameters for the steam turbine model 
 

Inputs  Outputs  
Mass flow rate of steam, HRSG [kg/s] Power output [MW] 
Mass flow rate of steam, boiler [kg/s] Feedwater temperature [°C] 
Steam temperature, boiler [°C] Condenser heat [MW] 
District heating return temperature [°C]   
District heating delivery temperature [°C]   
Heat pump heat [MW]   
Economizer heat [MW]   

 
 
The prediction accuracy is slightly worse for the condenser heat which could be derived 
from the fact that it is calculated and thereby dependent on several sensors. However, 
the accuracy is still acceptable which can be seen in Figure 16. 
 
Table 8. Error distribution for predictions 
 

Parameter <1% 1-2% 2-4% >4% 
Power output 2795 94 10 1 
Feedwater temperature 2900 0 0 0 
Condenser heat 1655 736 354 155 
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Figure 16. Condenser heat; prediction accuracy 

 

 
Figure 17. Power output; prediction accuracy 
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5 Means of  controlling the energy sector (in Sweden)  

Since a big part of this project is about connecting thermoeconomic calculations to 
developed ANN models, a description of the means of controlling the energy sector is 
necessary. The goal is to have a measurement of the production cost, both current and 
“predicted”, which allows e.g. plant degradation to be economically evaluated. This is 
possible since the ANN models always predict the performance of a healthy plant and 
thermoeconomic calculations based on these predictions will indicate what the 
production cost should be. Not only will the fuel prices and electricity prices affect the 
production cost but also taxes on fuels and energy production. The different taxes and 
fees are described in this chapter.  
 
The sulphur tax and NOx fee will not be described in detail as they do not affect the 
power plant at Västhamnsverket significantly since it operates on low sulphur fuels 
(pellets and natural gas) and is state financially neutral regarding NOx emissions  

5.1 Carbon dioxide tax 

To reduce carbon dioxide emissions all fossil fuels, such as coal, oil and natural gas, are 
subject to carbon dioxide tax. However, electricity production is freed of the tax and 
heat produced in combined heat- and power plants is only subject to 21 % of the tax. 
Pure heat production is subject to full, 100 %, carbon dioxide tax. Different fuels have 
different compositions and thereby the carbon dioxide tax varies depending on the fuel.  
 
Table 9. Carbon dioxide tax on various fuels 
 

Fuel type Carbon dioxide tax 
Coal 2317 SEK/tonne 
Oil (EO5) 2663 SEK/m3 
Natural gas 1994 SEK/km3 

 
 

5.2 Energy tax 

Fossil fuels are also subject to energy tax. However, this tax is not based on the carbon 
content of the fuel but instead on current tax policies. Both electricity production and 
heat production, in heat- and power plants, is freed of this tax while pure heat 
production is subject to full energy tax.  
 
Table 10. Energy tax on various fuels 
 

Fuel type Energy tax 
Coal 319 SEK/tonne 
Oil (EO5) 750 SEK/m3 
Natural gas 243 SEK/km3 
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5.3 Emission trading 

The emission trading is a mean to reduce the emission of greenhouse gases into the 
atmosphere, in accordance with the Kyoto protocol. At present time only carbon dioxide 
is included in the system, but more greenhouse gases could be included in the future. 
The trading is done with carbon contracts where each contract represents the right of 
emitting one tonne of “fossil” carbon dioxide.  

5.4 Green Certificates 

Producers of electricity are awarded one green certificate for every megawatt hour of 
electricity generated with renewable energy sources. “Renewables” include wind-, 
solar-, wave- and geothermal energy along with certain types of bio fuels and hydro 
energy. The demand for green certificates is created through a quota system which 
states the proportion of renewable sources in the energy mix from year to year. 
 
Table 11. Quotation levels for renewable fuels year 2003 – 2015 
 

Year Quota [%] 
2003 7,4 
2004 8,1 
2005 10,4 
2006 12,6 
2007 15,1 
2008 16,3 
2009 17,0 
2010 17,9 
2011 17,9 
2012 17,9 
2013 8,9 
2014 9,4 
2015 9,7 
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6 Thermoeconomic analysis 

The production cost is divided between the two different means of production, i.e. gas 
turbine/natural gas and solid fuel boiler/pellets. Since these are closely connected 
through the hybrid configuration, special consideration is needed when calculating the 
production cost. The method is explained in detail in chapter 6.1 and chapter 6.2.  
 
Generally, electricity and heat production is much more profitable for the solid fuel 
boiler than for the gas turbine. The gas turbine is only profitable during the coldest 
winter months when the efficiency is high as well as the electricity prices. To exemplify 
this, the production cost is calculated, based both on measurements and predictions, for 
a period with varying operational conditions (such as ambient, district heating, etc.).  
The price of electricity was varied between 140 and 1000 SEK per megawatt hour and 
the results are shown in Figure 18. Some incomes are included in the calculations and 
hence the value for “production cost” turns negative at a certain point.  
 
The gas turbine process reacts faster to change in electricity price thanks to a higher 
alpha value and with given prerequisites there is a breaking point at 630 SEK per 
megawatt hour when production becomes more profitable in the gas turbine. However, 
important to point out is that the gas turbine can not operate in combined cycle without 
the solid fuel boiler since the amount of steam produced in the HRSG is too small to 
alone expand in the steam turbine.  
 
Table 12. Inputs for calculation of production cost 
 

Inputs Price  
Gas price 185 SEK/MWh 
Gas grid 35 SEK/MWh 
Electric grid 13 SEK/MWh 
Carbon dioxide tax 1994 SEK/kNm3 
Energy tax 243 SEK/kNm3 
Carbon contracts 200 SEK/tonne 
Pellets price 225 SEK/MWh 
Green certificates 170 SEK/MWh 
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Figure 18. Production cost at varying price of electricity 

6.1 Gas turbine 

Four larger posts are used to calculate the production cost, i.e. cost of fuel (natural gas), 
cost of taxes, cost of carbon contracts and income of electricity. The smaller posts are 
cost of maintenance and cost of tax for auxiliary power used for electricity production. 
Everything is calculated in SEK per megawatt hour of produced heat. 
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When calculating the production cost all plant specific parameters are available both as 
measurements and predictions which enables comparison of “optimal” production cost 
with actual production cost. Example of parameters used is fuel flow, condenser heat 
and power output.  

6.1.1 Cost of fuel 

The cost of fuel is calculated with current gas and grid prices. Heat is produced both 
directly in the HRSG but also through the condensers connected to the steam turbine 
since part of the steam is generated in the HRSG. 
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6.1.2 Cost of carbon dioxide tax 

21 % of the heat production is subject to carbon dioxide tax. The amount of fuel used 
for heat production is calculated by using the alpha value 
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The alpha value is calculated as follows: 
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6.1.3 Cost of carbon contracts 

An emission factor is used to calculate the amount of carbon dioxide formed when 
burning natural gas. 
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6.1.4 Income of electricity 

The auxiliary consumption is estimated to 3 % when calculating the income of 
electricity. 
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6.1.5 Other posts 

The maintenance cost for heat production is estimated to be 4 SEK per megawatt hour 
of produced heat and for power production 4 times alpha per megawatt hour of 
produced heat. 
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Also, full carbon dioxide tax and energy tax has to be paid for 1.5 % of the consumed 
gas. 
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6.2 Solid fuel boiler 

Three larger posts and one smaller are used to calculate the production cost. The larger 
posts include cost of fuel, income of electricity and income of green certificates. The 
smaller post is cost of maintenance.  
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6.2.2 Income of electricity 

The auxiliary consumption is estimated to 10 % when calculating the income of 
electricity. 
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6.2.3 Income of green certificates 
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6.2.4 Other posts 

The maintenance cost for heat production is estimated to be 8 SEK per megawatt hour 
of produced heat and for power production 8 times alpha per megawatt hour of 
produced heat. 
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The alpha value is calculated as follows: 
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7 The online graphical user interface (GUI) 

The ANN models are integrated on a power generation information manager (PGIM) 
server and continuously use the latest operational plant data to generate predictions, 
which are also stored on the server. Both operational data and predictions, historical or 
current, are accessible through the graphical user interface (GUI), which in return is 
accessible on all workstations connected to the PGIM server. 
 
The GUI is developed in Excel to be foreseeable and easy to use. It is divided into five 
sheets where the first one (seen in Figure 19) displays an overview of the entire hybrid 
plant showing the main parameters for each component together with the production 
cost for the gas turbine and the solid fuel boiler. Different inputs to the system are also 
shown, both thermodynamic and economic. The ANN predictions are displayed below 
their equivalent measured values, which enables evaluation of plant performance. The 
user is also alerted about any observed difference. The remaining 4 sheets contain 
detailed information about the specific components of the hybrid plant, i.e. gas turbine, 
steam turbine, solid fuel boiler and HRSG.  
 

 
Figure 19. GUI, Main View 

 
The GUI update frequency is adjustable to fit the user needs and at every update the 
latest values are fetched from the PGIM server. The GUI includes a function for 
warning and alarm for possible deviations from normal operation together with a tool 
for parameter analysis. These features are described in detail later in this chapter.  
 
Economical inputs are typed in by the user, except price of electricity which is updated 
automatically with data from Nordpool. 
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7.1 Gas turbine 

The representation of the gas turbine in the GUI is used to exemplify the detailed 
component information sheets. Previously described ANN input and output parameters 
are seen in this view together with calculated values of efficiency and alpha value. 
Measurements and predictions are always shown together.  
 

Figure 20. GUI, Gas turbine 

7.2 Warning and Alarms 

To alert the user on deviations between measurements and predictions a warning/alarm 
indicator is located on the main view of the GUI. Limits for warnings and alarms are 
individually specified for each parameter depending on e.g. measurement and prediction 
accuracy. In Figure 21 two warnings have been generated through lowering the warning 
limits to 0.5 %. When shifting to the gas turbine view the deviating parameters are 
indicated with a yellow color, demonstrated in Figure 22. In Figure 23 two warnings 
and one alarm has occurred.  
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Figure 21. GUI, Main view with two warnings 

 
Figure 22. GUI, gas turbine with two warnings 

 
Figure 23. GUI, gas turbine with one alarm and two warnings 
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7.3 Parameter analysis 

With the developed tool for parameter analysis the user is able to, with a few clicks, 
analyze any chosen parameter for any chosen time interval, demonstrated in Figure 24. 
After a parameter and interval is chosen a plot, with measurements and predictions, is 
generated, demonstrated in Figure 25. 
 

Figure 24. GUI, Parameter analysis 

 

Figure 25. GUI, Plot with measured and predicted values 
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8 Results 

The accuracy of the ANN models is summarized in the tables below.  
 
Table 13. Gas turbine ANN prediction error distribution 
 

Parameter <1% 1-2% 2-4% >4% 
Power output 7179 58 1 1 
Compressor inlet pressure 7239 0 0 0 
Inlet guide vanes angle 6489 558 183 9 
Bleed temperature 7142 90 6 1 
Compressor outlet pressure 7234 3 2 0 
Compressor outlet temperature 7223 16 0 0 
Mass flow rate of fuel 6649 579 8 3 
Mass flow rate through turbine 7229 8 2 0 
Exhaust gas temperature 7239 0 0 0 

 
 
Table 14. HRSG ANN prediction error distribution 
 

Parameter <1% 1-2% 2-4% >4% 
Volume flow rate of district heating water 3387 2225 1188 165 
Mass flow rate of steam 5757 1019 165 24 
Superheater 1 steam exit temperature 6949 16 0 0 
Superheater 2 steam exit temperature 6965 0 0 0 
Stack exit temperature 6481 464 17 3 
District heating economizer heat 4729 1711 453 72 

 
 
Table 15. Boiler ANN prediction error distribution 
 

Parameter <1% 1-2% 2-4% >4% 
Mass flow rate of steam 2628 229 25 18 
Steam temperature 2332 517 51 0 
Mass flow rate of pellets 2462 400 30 8 
Economizer heat 157 168 389 2186 

 
 
Table 16. Steam turbine ANN prediction error distribution 
 

Parameter <1% 1-2% 2-4% >4% 
Power output 2795 94 10 1 
Feedwater temperature 2900 0 0 0 
Condenser heat 1655 736 354 155 
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Other results are: 
 

• The comparison between the gas turbine ANN models show good congruence. 
• ANN where models successfully installed on PGIM server in Västhamnsverkets 

computer system. 
• A GUI in Excel was developed, integrated and tested at site 
• Economical parameters where connected to the ANN models for 

thermoeconomic analysis. 
• An indicator for warnings and alarms was integrated in the GUI 
• A tool for parameter analysis was integrated in the GUI. 
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9 Conclusions 

The results show: 
 

• ANN modelling of the hybrid plant can be done with high accuracy. 
• ANN models can be integrated in the computer system of a power plant for 

online prediction of plant performance. 
• Predictions from the ANN models are available through all workstations 

connected to the PGIM server. 
• The GUI can be used for condition monitoring and thermoeconomic analysis 

 
The ANN models are specifically developed for the hybrid plant at Västhamnsverket 
and can therefore not be used directly on other heat- and power plants. However, the 
method of developing the models, GUI etc. is general.  
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10 Recommendations and applications 

The developed tool for condition monitoring and thermoeconomic analysis can be used 
by the power plant owner to make maintenance more efficient through a transition 
towards condition based maintenance. 
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