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Executive Summary 
In this report, the technical and economical feasibility to produce higher alkanes from bio-
glycerol has been investigated. The main purpose of producing this kind of chemicals would 
be to replace the fossil LPG used in upgraded biogas production. When producing biogas and 
exporting it to the natural gas grid, the Wobbe index and heating value does not match the 
existing natural gas. Therefore, the upgraded biogas that is put into the natural gas grid in 
Sweden today contains 8-10 vol-% of LPG.  

The experimental work performed in association to this report has shown that it is possible to 
produce propane from glycerol. However, the production of ethane from glycerol may be 
even more advantageous. The experimental work has included developing and testing cata-
lysts for several intermediate reactions. The work was performed using different micro-scale 
reactors with a liquid feed rate of 18 g/h.  

The first reaction, independent on if propane or ethane is to be produced, is dehydration of 
glycerol to acrolein. This was showed during 60 h on an acidic catalyst with a yield of 90%. 
The production of propanol, the second intermediate to producing propane, was shown as 
well. Propanol was produced both using acrolein as the starting material as well as glycerol 
(combining the first and second step) with yields of 70-80% in the first case and 65-70% in 
the second case. The propanol produced was investigated for its dehydration to propene, with 
a yield of 70-75%. By using a proprietary, purposely developed catalyst the propene was hy-
drogenated to propane, with a yield of 85% from propanol. The formation of propane from 
glycerol was finally investigated, with an overall yield of 55%. 

The second part of the experimental work performed investigated the possibilities of decar-
bonylating acrolein to form ethane. This was made possible by the development of a proprie-
tary catalyst which combines decarbonylation and water-gas shift functionality. By combining 
these two functionalities, no hydrogen have to be externally produced which is the case of the 
propane produced. The production of ethane from acrolein was shown with a yield of 75%, 
while starting from glycerol yielded 65-70% ethane using the purposely developed catalyst. 
However, in light of this there are still work to be performed with optimizing catalyst compo-
sitions and process conditions to further improve the process yield.  

The economic feasibility and the glycerol supply side of the proposed process have been in-
vestigated as well within the scope of the report. After an initial overview of the glycerol sup-
ply, it is apparent that at least the addition of alkanes to biogas can be saturated by glycerol 
for the Swedish market situation at the moment and for a foreseeable future. The current do-
mestic glycerol production would sustain the upgraded biogas industry for quite some time, if 
necessary. However, from a cost standpoint a lower grade glycerol should perhaps be consid-
ered.  

In the cost aspect, three different configurations have been compared. The three alternatives 
are ethane production, propane production with internal hydrogen supply and propane produc-
tion with external hydrogen supply. The results from the base case calculations can be viewed 
in table ES1. 
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Table ES1 Result of the base case cost estimates. 
 Propane Intern. H2 Propane Ext. H2 Ethane Production 
Glycerol (kg/h) 32 21 36 
Water (kg/h) 126 83 144 
Hydrogen (kg/h) N/A 1.3 N/A 
    
Operating Cost    
Glycerol (kr/y) 231 570 152 924 265 137 
Electricity (kr/y) 23 157 15 292 26 514 
Water (kr/y) 20 165 13 316 23 088 
H2 (kr/y) N/A 347 347 N/A 
Total (kr/y) 274 892 528 879 314 739 
    
Equipment cost (kr/y) 512 170 365 836 219 502 
    
Annual cost (kr/y) 787 063 894 715 534 240 
    
kWh Cost (kr/kWh) 1.60 1.82 0.78 

 
The base case calculations are based on carburating the upgraded biogas, before introducing it 
to the natural gas grid, from a 24 GWh biogas production facility. This means that the produc-
tion units supply an acceptable Wobbe index of the final upgraded biogas. The annual cost in 
table ES1 is the yearly cost of carburating the gas at a 24 GWh biogas site. From the base 
case, it is obvious that there are differences in glycerol consumption depending on what alter-
native is chosen. There are also investment cost differences. To further investigate the volatil-
ity of the prices, a blend of Monte Carlo techniques were used to generate multiple data sets.  

The conclusions from the simulations were that the ethane producing facility has a stronger 
dependence on the feedstock; it is hence more sensitive to changes in the feedstock cost. It is 
however not as sensitive to changes in investment cost. If the production cost is compared to 
the cost of fossil LPG used today, the cost of the LPG is 0.43 kr/kWh. This does however not 
include the taxation and transporting the fuel. Adding the taxation alone will put an additional 
0.25 kr/kWh on the cost, totalling 0.68 kr/kWh. This compares well with the calculated pro-
duction cost of 0.78 kr/kWh for ethane and with the 50% percentile acquired from the Monte 
Carlo simulations of 0.94 kr/kWh.  
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1 Introduction 
In Sweden today there are large quantities of bio-methane produced via fermentation of dif-
ferent waste products e.g. manure, municipal waste, stover, etc. In Sweden 330 GWh was 
used for heating purposes and 40 GWh for electricity production in 2005 (1), while 0.23 TWh 
was used in the transport sector in 2006 (2). The produced bio-methane is in many cases 
cleaned, upgraded and transferred to the natural gas grid. However, the bio-methane produced 
does not, even after upgrading, have the same heating value and wobbe index as the natural 
gas. The first causes problems concerning metering and billing and the latter is a potential 
problem to certain groups of equipment. To circumvent this problem in the Swedish context, 
where Danish gas from the North Sea is mainly used, propane is added to the biogas before it 
enters the natural gas grid. Currently the added propane is of fossil origin (3) and should 
therefore be replaced by propane or another gaseous, higher hydrocarbon from a renewable 
source.  

As an alternative source of propane this report aims at investigating the possibilities of pro-
ducing bio-propane from bio-glycerol. During the production of biodiesel via trans-
estrification from triglycerides, large quantities of glycerol are produced as by-product. For 
every 10 kg of biodiesel produced, 1 kg of glycerol is formed. The significant worldwide in-
crease in biodiesel production has resulted in a glut on the glycerol market, with decreasing 
glycerol prices as a result. Glycerol has traditionally been a high-value chemical used in the 
food and cosmetic industry, but has over the last few years decreased in price from about 
7 SEK/kg to less than 0.3 SEK/kg (4). This, in combination with increased feedstock cost, has 
basically undermined the profitability of any biodiesel operation. It has however created an 
entirely new research area, glycerol upgrading to high value chemicals.  

Besides biogas the produced propane, or propane equivalent, can be envisioned to fulfil other 
purposes than the biogas application intended. One such alternative use would be as a “green” 
component in LPG, making it possible to substitute parts of the LPG used to a low carbon 
footprint LPG.  

BioFuel-Solution i Malmö AB have since the beginning of 2007 performed research within 
the field of glycerol conversion, mainly focused towards other alcohols. This research has to 
date resulted in 2 US patent applications, in association with an American biodiesel producer, 
and another 2 patent drafts within the field.  

1.1 Background 
The area of glycerol research has dramatically developed over the last 5-10 years, from the 
synthesis of glycerol to the use of glycerol as a starting point for different synthesis. It is gen-
erally accepted that the primary source of renewable organic fuels, chemicals and materials 
will be plant derived biomass (5) (6) (7) (8). But only 3% of the chemicals produced in the 
US was biomass derived in 2004 (9). However, the US department of Energy (US DoE) aim 
at increasing the fraction of renewable chemicals to 17% by 2020 and 47% by 2050. To 
achieve this, the US DoE has identified 12 chemicals to be used as building blocks for high 
value chemicals (10); glycerol is one of these and is readily available due to its production 
within the biodiesel industry (11).  

The end-products most often mentioned in the glycerol context are ethylene- and 
1,2-propylene glycol and lactic acid. The first two chemicals are industrially important for the 
manufacturing of polymers, cooling fluids, food and cosmetics. Lactic acid is an important 
food industry chemical and the basis for producing poly-lactic acid (PLA). The demand of 
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these chemicals is 500 ktons per annum (tpa) for lactic acid (12), 1 500 ktpa for propylene 
glycol (13) and 2 500 ktpa for ethylene glycol (14). The commercialization of production of 
these products from glycerol using catalytic methods is projected to the very near future.  

Another interesting area of research is the utilization of glycerol as a substrate for microbial 
fermentation of different chemicals (15) (16) (17). However, in the case of fermentation the 
resulting products end up in a dilute aqueous solution and need some form of separation, usu-
ally energy intense, before sale or use. But the selectivity of these processes is generally ex-
ceptionally good. The product spectra found in the literature is larger for microbial conversion 
of glycerol than for catalytic and includes: 1,3-propylene glycol, butanol, ethanol, methanol, 
hydrogen, propionic acid etc. (18). 

Reacting glycerol to useful chemicals can be performed either in the gas phase or in the liquid 
phase, with both methods having advantages. In the gas phase the glycerol has to be vaporized 
and then reacted, which potentially lead to heat losses. In the liquid phase, the selectivity is 
usually lower and more advanced catalysts have to be used to achieve a reasonable product 
distribution.  

1.2 Project Outline 
Within the scope of the performed project, the possibility to produce fuel additives to biogas 
from bio-glycerol has been investigated. The investigated fuel additives have been propane, 
which is normally used in biogas carburetion, and ethane as an alternative. The need for an 
additive is determined by the high Wobbe-index of the natural gas used in Sweden, requiring 
any biogas entering the natural gas grid to have the same Wobbe-index. Biogas (containing 
mainly methane) is situated in the outskirts of the allowed area for natural gas, figure 1; how-
ever the biogas produced and entered into the gas grid, also have to match more specific crite-
rias. In that the exported, upgraded biogas has to match the existing natural gas for metering 
purposes as well.  
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Figure 1 The allowed area for natural gas concerning specific density and natural gas, according to DVGW (19). 

The addition of higher hydrocarbons increases both the Wobbe-index and the specific density, 
while carbon dioxide (formed during the biogas production) lower the Wobbe-index but in-
crease the specific density, according to the information in figure 1. The higher hydrocarbon 
used today is propane, with a Wobbe-index of 17.8. Using a renewable base for the propane 
e.g. glycerol from the biodiesel industry, would enable the production of bio-propane or some 
other gas additive like ethane.  

In this study, the possibility of replacing the fossil propane used with bio-propane has been 
evaluated. From a technical stand-point investigating the possibilities to produce bio-propane 
from glycerol and from a market perspective, where supply and cost is investigated. The pro-
duction of bio-propane has been performed using mild chemical methods, without carbon-
carbon bond breakage i.e. avoiding syngas production.  
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2.1 Results 
In this section the results from the various experiments performed will be reviewed, starting 
with the individual reactions and advancing towards more complex reaction systems.  

2.1.1 Glycerol to Acrolein 
The first reaction, independent of desired end-product is to convert the glycerol feedstock into 
acrolein. Acrolein is an unsaturated aldehyde, meaning that it is an activated molecule that 
can be further processed: 

HOCH2-CH2OH-CH2OH  CH2=CH-CHO +2 H2O 

Two water molecules are removed from the glycerol molecule (dehydration) on an acidic cat-
alyst. In this case the reaction is performed in the gas phase, at a temperature of approximate-
ly 250-300°C. Glycerol solution (20 w% in water) at a rate of 18 g/h was used in this experi-
ment. In the pre-heater the liquid is heated and gasified before entering the dehydrogenation 
reactor, with 25 g of catalyst (Z-1152 10-20 mesh). A small carrier-gas stream of 50 ml/min 
of N2 was added to the gas stream before entering the reactor. The reactor 1 inlet temperature 
was 265°C and the run was performed atmospheric. The result of a 60 h run is shown in fig-
ure 5. 
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Figure 5 Conversion of glycerol to acrolein, normalized carbon balance. 

The experiment was performed over a range of 7 days, operated approximately 8h per day. 
Full conversion of the glycerol was obtained and the yield of acrolein was high, in the range 
of 90%. The only condensable by-product obtained was hydroxyacetone, in the range of 10% 
yield. 

2.1.2 Acrolein to Propanol 
The next step in obtaining propane from glycerol, is the reaction of the acrolein formed to 
propanol. In this experiment, the production of 1-propanol is demonstrated using acrolein as a 
starting point. In reactor 1, 14 g of hydrogenation catalyst was used (BF-1015). A feed of 
18 g/h of 10 w% of acrolein in water was used. 400 ml/min of hydrogen was added to the 
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inlet stream in the pre-heater. Inlet temperature to the reactor was 230°C and a total pressure 
of 5 bar(a) was used, figure 6. 

 
Figure 6 Conversion of acrolein to 1-propanol, normalized carbon balance. 

Full conversion of the acrolein was obtained and in figure 6 it can be seen that a yield of 70-
80% was obtained. As a by-product, a 20% yield of propionaldehyde was obtained at the spe-
cific reaction conditions.  

2.1.3 Glycerol to Propanol 
In this experimental section the process from glycerol to propanol was demonstrated, that 
means that the dehydration and hydrogenation steps demonstrated above was integrated. In 
the experimental setup, in figure 5 above, reactor 1 was loaded with 30 g dehydrogenation 
catalyst (Z-1152 10-20 mesh) and reactor 2 was loaded with 12 g of a commercial hydrogena-
tion catalyst. The inlet feed rate was 18 g/h of 20 w% glycerol solved in water. Inlet tempera-
tures were 290°C for reactor 1 and 260°C for reactor 2 and the reaction was performed at 5 
bar(a)  pressure. The results are shown in figure 7.  
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Figure 7 Conversion of glycerol to propanol using two reactors.   
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The reaction was initialized during a period of 6 hours and then reached a more stable state. 
The main products are 1-propanol (50% yield) and 2-propanol (5% yield). Both propanols can 
be dehydrated into propene. The major by-product is propionaldehyde with a yield of 10%. 
The propionaldehyde is an intermediate in the hydrogenation of acrolein into propanol and 
can be fully hydrogenated with longer residence time in the reactor, higher temperature or a 
more active catalyst. In figure 7, it can be seen that a decrease of the propionaldehyde content 
causes an increase in the propanol content. This means that there is an overall yield in this 
experiment of 65-70%, with a carbon balance of 80%.  

2.1.4 Propanol to Propene 
In this experiment the dehydration of propanol into propene was demonstrated. In this case, 
only reactor 1 in the experimental set-up in figure 3 was loaded with 30 g catalyst (Z-1104 10-
20 mesh). The inlet feed to the system was 18 g/h consisting of 10 w% propanol in water. A 
carrier-gas flow of 50 ml/min of N2 was added before the pre-heater and used to transport the 
formed gas-phase components, since the major system component (water) was condensed 
after the reaction. The inlet temperature of reactor 1 was 255°C and the reaction was per-
formed at atmospheric pressure. The results are shown in figure 8. 
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Figure 8 Conversion of propanol to propene.  

In figure 8 the major product is propene with a yield of 70-75%. The major by-products are 
carbon dioxide and carbon monoxide. A small amount of methane is formed (1-2% yield) and 
traces of ethene and ethane. 

2.1.5 Propanol to Propane 
In this experiment, the conversion of propanol to propane was demonstrated. Reactor 1 was 
loaded with 30 g of the dehydration catalyst (Z-1152 10-20 mesh) and reactor 2 was loaded 
with 14 g of the purposely developed Biofuel #1014 catalyst (10-20 mesh). 18 g/h of 10 w% 
propanol in water solution was fed to the unit and 400 ml/min of hydrogen was added in the 
pre-heater. The inlet temperature was 280°C in reactor 1 and 270°C in reactor 2 and the expe-
riment was run at 5 bar(a) pressure. In figure 9 the result of a 30 h run is shown. The yield of 
propane increases during the first 6-8 hours and is then stabilized around 85%. After 14 hours 
the inlet temperature of reactor 1 (dehydration) is decreased from 280°C to 230°C.  This re-
sults in a sharp decrease in the propane production. 
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Figure 9 Conversion of propanol to propane. 

As the temperature of the dehydration reactor (reactor 1) is decreased the dehydration of pro-
panol decreases and the yield tales off However, after 22 hours the inlet temperature of reac-
tor 1 is returned to 280°C and the propane yield returns to approximately 85%. 

2.1.6 Glycerol to Propene 
In this experiment the integrated process for production of propene from glycerol is demon-
strated. This means that it includes the glycerol to acrolein step, acrolein to propanol step and 
the propanol to propene step. In the experimental set-up (figure 3) reactor 1 was loaded with 
30 g of dehydrogenation catalyst (Z-1152 10-20 mesh), reactor 2 with 12 g of commercial 
hydrogenation catalyst and reactor 3 with 30 g of dehydrogenation catalyst (Z-1104 10-20 
mesh). The inlet temperature was 280°C, 270°C and 280°C for reactor 1, 2 and 3 respectively. 
The feed was 18 g/h of 20 w% glycerol in water and the operation pressure was 5 bar(a). 
400 ml of hydrogen was added to the inlet stream in the pre-heater. In figure 10, the result of a 
30 h run is shown.  
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Figure 10 Conversion of glycerol to propene with H2 present. 
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In this run, a propene yield of 40% is obtained. There is also a small production of propane, 
approx. 10% yield. The major by-product, not shown in the figure, is carbon monoxide and 
carbon dioxide. The propane present is probably a result of the hydrocarbon braking down 
into CO and CO2 by reaction with water, releasing hydrogen. This free hydrogen then causes 
the hydrogenation of the formed propene into propane. 

2.1.7 Glycerol to Propane 
In this experiment, the production of predominately propane was demonstrated. The same set-
up was used as in the experiment described above (Glycerol to Propene) but one further hy-
drogenation step with 14 g Biofuel #1014 catalyst was added. The inlet temperature was 
280°C, 270°C and 280°C for reactor 1, 2 and 3 respectively. The feed was 18 g/h of 20% gly-
cerol in water and the operation pressure was 5 bar(a). 400 ml of hydrogen was added to the 
inlet stream in the pre-heater. The result of an 8 h run is shown in figure 11.  
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Figure 11 Conversion of glycerol to propane with H2 present in the reaction mix; the results are shown using a 
normalized carbon balance. 

The yield of propane is approximately 55% but there is also a 20% yield of ethane. This is 
however a sub-optimized experiment and by tweaking operation parameters and catalyst 
compositions, the yield of propane is expected to be significantly increased.  

2.1.8 Acrolein to Ethene  
Another possible way to produce a saturated alkane from glycerol is by decarbonylation of the 
terminal aldehyde group. In this experiment the production of ethene from acrolein was dem-
onstrated, the unsaturated hydrocarbon is formed since there is a lack of hydrogen production 
functionality of the catalyst. 14 g of the Biofuel #1013 catalyst was loaded in reactor 1. A 10 
w% of acrolein in water solution was fed into the reactor at a rate of 18 g/h. A carrier-gas 
flow of 100 ml/min of N2 was added to the stream in the pre-heater. The reactor 1 inlet tem-
perature was close to 300°C and the total pressure was 5 bar(a). In figure 12 the result of a 
10 h run is shown.  
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Figure 12 Conversion of acrolein to ethene. 

In figure 12 it is possible to see that ethane is formed on a fresh non-reduced catalyst, but the 
formation decreases and ethene is formed instead. This catalyst is however not optimal for the 
production of ethane. For this purpose a catalyst with improved hydrogen production functio-
nality have to be developed. 

2.1.9 Acrolein to Ethane 
In this experiment the production of ethane from acrolein by decarbonylation followed by the 
water-gas shift reaction was demonstrated. 14 g of the Biofuel #1011 catalyst was loaded in 
reactor 1. A 20 w% of acrolein in water solution was fed into the reactor at a rate of 18 g/h. 
100 ml/min of hydrogen was added to the stream in the pre-heater. The reactor 1 inlet temper-
ature was 270°C and the total pressure was 5 bar(a). In figure 13, the result of a 4 h run is 
shown.  
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Figure 13 Conversion of acrolein to ethane with H2 present.  
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In the reaction either a CO or a CO2 is formed for each decarbonylated acrolein molecule. 
This means that the formed amount CO+CO2 and ethane should be equal, if no other by-
reaction occurs. The slight surplus of CO+CO2 shows that a minor part of the acrolein is re-
formed over the catalyst. Another by-product is 1-propanol formed by hydrogenation of the 
acrolein, due to the high hydrogen pressure.      
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Figure 14 Conversion of acrolein to ethane without H2 present. 

In figure 14, a result is shown of a run with the same conditions but without hydrogen present. 
Expected products were ethene and carbon dioxide:  

CH2=CH-CHO  CH2=CH2 + CO 

However, rather unexpectedly, the products were ethane and carbon dioxide. This means that 
the catalyst shifts the formed carbon monoxide to carbon dioxide and hydrogen by reaction 
with water: 

CO + H2O ↔ CO2 + H2   

The formed hydrogen is then consumed by hydrogenation of the formed ethene: 

CH2=CH2 + H2  CH3-CH3   

This means that the ethane production from acrolein (and the total pathway from glycerol) 
does not require any external hydrogen supply. The gas mixture with ethane, carbon dioxide, 
water and a small amount of propanoic acid should be rather simple to separate. This means 
that the Biofuel #1011 catalyst not only decarbonylates, it also has water-gas shift functionali-
ty. 

2.1.10 Glycerol to Ethane 
In this experiment the complete route from glycerol to ethane was demonstrated using several 
reactors. Reactor 1 contained 30 g of Z-1152 dehydration catalyst and reactor 2 contained 14g 
Biofuel #1011. The feed consisted of 18 g/h of 20 w% glycerol in water and 50 ml/min of N2 
was used as a carrier gas. The inlet temperature of reactor 1 was 270°C and for reactor 2 the 
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inlet temperature was 230°C, the total pressure was 5 bar(a). In figure 15, the result from a 
20 h run is shown.  

 
Figure 15 Conversion of glycerol to ethane without hydrogen, normalized carbon balance.   

In figure 15 it can be seen that at least two parallel reaction paths takes place. The first one is 
the expected: 

Glycerol → Acrolein → Ethane + CO2 

The second one produces carbon monoxide from either glycerol or acrolein, for instance: 

glycerol → 3 CO 

However, during the first 6 hours this carbon monoxide is oxidized into carbon dioxide, may-
be during reduction of the catalyst. After 6 hours the amount of carbon dioxide starts to fall 
down to the same yield as the ethane, indicating an equimolar reaction (one mole acrolein 
forms one mole ethane and one mole carbon dioxide). While the carbon dioxide starts to de-
crease, carbon monoxide appears and displays a mirror image. This indicates that the carbon 
monoxide is formed from a side reaction, competing with the main reaction. 

2.2 Conclusions of Experimental Work 
It have been shown that glycerol in water solutions (10-20 w%) can be converted to various 
gas phase components. Intermediate steps, as well as total integrated processes have been 
demonstrated in the performed experiments for both the production of propane and ethane. 
Conversions to useful products in the range of 55% and above have been achieved in the la-
boratory scale, without any particular efforts to optimizing the processes. It is expected that 
there can be significant improvements in the yield by optimization of catalyst compositions, 
operating conditions etc.  

The durability of the catalytic processes has also been demonstrated in medium term runs 
(10-60 h). This means there is a substantial chance to success with a pilot unit, even though 
there is a need for additional catalyst and process optimization as well as catalyst life time 
investigations.  

Production of propene or propane can be done in three and four steps respectively with supply 
of external hydrogen. However, ethane and ethene can be produced in two steps without any 
supply of hydrogen, a simpler and more cost effective pathway for glycerol utilization than 
the propane path.   
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3 Cost Estimate 
The production volumes of biodiesel has increased the production of bio-glycerol, as the rela-
tion between produced diesel and by-product glycerol is 10:1 on a mass basis. During 2007, 
the production of biodiesel in the EU 27 was 5 713 000 ton (20). The majority of this produc-
tion was done in Germany (2 890 000 ton), France (872 000 ton) and Italy (363 000 ton). The 
Swedish production in the same year was 63 000 ton. The capacity in Europe in 2008 (calcu-
lated based on 330 working days per year and plant) is 16 000 000 ton of maximum biodiesel 
production. This indicates that during 2007, 571 300 ton of glycerol was produced. During the 
same time frame (2006) the biogas production was 1.3 TWh and at present there are 227 pro-
duction facilities in Sweden, of which 34 facilities upgrade the biogas to transport fuel quality 
(21). Out of the 1.3 TWh produced some 0.23 TWh was upgraded and used for transportation 
purposes in 2006 (2).  

In the economic evaluation, three alternatives have been compared. The alternatives are:  

1. Propane production from glycerol with internal hydrogen supply. 
2. Propane production from glycerol with external hydrogen supply. 
3. Ethane production from glycerol. 

 
Each of these units has been sized to match a biogas production capacity of 24 GWh bio-
gas/year, comparable to the biogas facility in Vrams Gunnarstorp. The reaction set-ups are 
still preliminary and only to be viewed as a basis for the economic evaluation. However, ini-
tial calculations have shown that the heat balance closes, to some extent, in most cases de-
pending on the possible inlet glycerol mixture concentration.  

3.1 Unit Configurations 
In the first process suggestion the hydrogen to support the hydrogenation of the double bonds, 
the result of the dehydration, is produced by steam reforming of glycerol. The hydrogen is 
recycled to improve the overall hydrogen balance using an internal PSA (pressure swing ad-
sorption) technology, figure 16. Glycerol and water are pumped from two vessels and mixed. 
The mixed stream is sent to the glycerol conversion process (stream 6), where it is mixed with 
hydrogen (stream 14), and to the hydrogen generation process (stream 15). The mixture of 
glycerol/water and hydrogen is vaporized and passed through a first dehydra-
tion/hydrogenation step. The temperature is then adjusted and the gases are past through a 
second dehydration/hydrogenation reactor where the product propane is produced. The gases 
are condensed, heating the feed, and is mixed with the product from the hydrogen production. 
The gases are separated in the PSA, where the product propane and a small amount of CO2 
and hydrogen are rejected as PSA off-gas (stream 23). The hydrogen content of the off-gas is 
burnt selectively using a catalyst and air (stream 24) and the heat is used to preheat the steam 
reformer feed. The resulting mixture of CO2 and propane is sent into the biogas plant 
(stream 27), where the CO2 is removed with the CO2 produced in the biogas fermentation.  
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 Figure 16 The Process Flow Diagram of the propane process with internal hydrogen production. 

To avoid the cost of the hydrogen generation, an alternative set-up with external hydrogen 
supply has been considered, figure 17. In this case, the hydrogen production via steam reform-
ing has been replaced by an external hydrogen supply (stream 13). The basic process remains 
the same as in the first case, with internal hydrogen recycle and clean-up.   
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Figure 17 The Process Flow Diagram of the propane process with external hydrogen supply. 

In the third case considered, the final product is ethane, figure 18. The glycerol (stream 1) is 
mixed with water (stream 3) and is vaporized and heated. The mixture is passed through a 
reactor and the resulting product, ethane and CO2 (stream 8), is sent to the biogas process gas 
upgrading for CO2 removal. The process is simpler than the ones suggested above, but a larg-
er amount (40% excess) is needed to get the correct Wobbe-index of the biogas.  
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Figure 18 The Process Flow Diagram of the ethane production process. 

3.2 Production Cost Estimates 
To give a first approximation on the cost of production with the three different alternatives, 
the production costs have been estimated. In all cases the operating costs has been taken into 
account. The largest expense is the bio-glycerol used as feedstock, but also cost of electricity 
and water has been taken into account. The parameters of the three processes used in the cost 
estimates are summarized in table 1. 

Table 1 Parameters used for the production cost estimates. 
 Propane Internal H2 Propane External H2 Ethane Production 
Glycerol (kr/kg) 0.9 0.9 0.9 
Water (kr/ton) 20 20 20 
Hydrogen (kr/kg) 0 33 0 
Electricity 10% of glycerol cost 10% of glycerol cost 10% of glycerol cost 
Investment cost 2 100 000 1 500 000 900 000 
Interest rate 7% 7% 7% 
Depreciation time 5 years 5 years 5 years 
Time On-Line 8 000 8 000 8 000 
Process efficiency  60% 60% 70% 

 
The cost of the feedstock has been derived using actual crude glycerol costs, with a cost pe-
nalty for the actual clean-up of the glycerol. The investment cost has been decided by esti-
mates on the type of equipment needed and the complexity of each system. The process effi-
ciencies are based on the experimental investigation but the estimate should be considered 
preliminary, due to the exploratory nature and limited time and scope of the study.  
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Using the parameters in table 1 the production cost per kWh is 1.82 kr in the case of external 
hydrogen supply, 1.6 kr/kWh in the case of internal hydrogen production and 0.78 kr/kWh in 
the ethane case. The production cost of the two first cases doesn’t differ very much, but in the 
case of ethane the production cost is significantly lower.  

However, if the annual cost of adding propane to a 24 GWh biogas plant is taken into account, 
the costs are more level. In the case of internal hydrogen supply, the annual cost would be 
~787 000 kr. Which should be compared to ~895 000 kr for the externally supplied hydrogen 
process and ~534 000 kr for the ethane process. The reason for the relatively high annual cost 
for the ethane process (compared to the differences in kWh cost) is due to the higher ethane 
required compared to propane (40% surplus). A cost breakdown for the base case can be 
viewed in table 2.  

Table 2 Result of the base case cost estimates. 
 Propane Intern. H2 Propane Ext. H2 Ethane Production 
Glycerol (kg/h) 32 21 36 
Water (kg/h) 126 83 144 
Hydrogen (kg/h) N/A 1.3 N/A 
    
Operating Cost    
Glycerol (kr/y) 231 570 152 924 265 137 
Electricity (kr/y) 23 157 15 292 26 514 
Water (kr/y) 20 165 13 316 23 088 
H2 (kr/y) N/A 347 347 N/A 
Total (kr/y) 274 892 528 879 314 739 
    
Equipment cost (kr/y) 512 170 365 836 219 502 
    
Annual cost (kr/y) 787 063 894 715 534 240 
    
kWh Cost (kr/kWh) 1.60 1.82 0.78 

Using the base cases to investigate the supply of the feedstock, approximately 10 times the 
amounts processed in this fictive plant, is required for all the upgraded biogas in Sweden. 
This indicates that 2 560 tpa, 1 680 tpa and 2 880 tpa of glycerol (for the propane Int. H2, the 
Propane Ext. H2 and the Ethane case respectively) would be enough to supply the Swedish 
upgraded biogas production with higher alkanes. This indicates that the glycerol produced as 
a by-product from the biodiesel industry would be feasible as feedstock for this application. 

To investigate how the production cost varies with the feedstock cost, a Monte Carlo simula-
tion was performed. The feedstock was set at a lowest available value of 0.6 kr/kg, a maxi-
mum value of 2.4 kr/kg and a most likely value of 1.2 kr/kg. Within this range 10 000 values 
were generated using a normal distribution based on the minimum, maximum and most likely 
value; a triangulation simulation. In figure 19 the distribution of production costs are shown.  
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4 Conclusions 
The aim of this study was to confirm the technical feasibility of producing bio-propane from a 
renewable glycerol feedstock. In the experimental work, it has been shown that production of 
propane with 55-60% yield from glycerol and ethane with 65-75% yield is possible. It should 
however be noted that the experiments have been performed without extensive optimization; 
it is therefore expected that there are possibilities of improvements in the yields of both prod-
ucts by optimizing the catalyst compositions and process conditions.  

From a technical aspect, both end-products considered are feasible to produce. There are 
however additional benefits to producing ethane from a simplicity standpoint. This route 
would omit the need for external or internal hydrogen supply. There is also a possibility to 
make the process run auto-thermally, by managing to increase the inlet glycerol concentration 
from 20% to 30% in water. Due to the simplicity and promise of higher yields in the ethane 
process, it is believed that the glycerol consumption can be approximately the same producing 
ethane and propane. Even though the produced, end-product kWh is higher in the ethane case.   

From an economical standpoint, the production of ethane is more favorable than the produc-
tion of propane, albeit just as feasible. The production cost of the ethane produced is in the 
same order of magnitude as the fossil propane used in the biogas industry today. Using ethane 
as a component in LPG will however be limited by the allowed maximum of 2% ethane. This 
limitation can however be disregarded at the moment, as the 2% is still a very large market in 
Sweden and abroad. 

The supply side of the glycerol does not seem to be a limiting factor at the moment. The pro-
duction of upgraded biogas in Sweden today will require about 20% of the byproduct glycerol 
produced by Perstorp bio-chemicals in Stenungsund. This indicates that the purpose of using 
glycerol for supplying additional heating value to upgraded biogas is feasible not only today, 
but for a foreseeable future. However, the economic feasibility is limited by the feedstock 
cost. Therefore it would be suitable to use a lower grade, crude glycerol, than the one generat-
ed in Stenungsund. Another advantage of using glycerol is that a non-poisonous, non-volatile 
liquid could be transported and converted on-site, instead of the liquefied gas used today. 
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