Bio-LNG Improves your Carbon Footprint

Dr. Mattias Svensson Swedish Gas Technology Centre *3rd Small Scale LNG Forum 2014*

3rd SSLNG Foru

The technology and economy of liquefied biomethane production 1. Cryogenic upgrading followed by liquefaction (or not)

Basics of liquefaction

N2 expansion process: a) compressor b) condensor c) expansion valve d) evaporator

• Direct or indirect cooling

- Refrigerant and upgraded biogas cooled directly through compression and expansion
- Incoming biogas cooled indirectly through heat exchange with the refrigerant or other cool product streams

• Energy efficiency and good economy is the challenge

- Multi-stage cycles (reverse nitrogen Brayton cycle) easy to design but have inherent efficiency limitations
- Mixed refrigerant cycles more energy efficient but choice of refrigerant boiling point characteristics need to be adjusted to fit each application (makeup of the raw biogas)

Cryogenic upgrading

- CO2 removal the most challenging
 - Sublimates to solid and/or condense to liquid when chilled

Source: SGC Rapport 270 http://www.sgc.se/en/?pg=1445651)

CO2 wash ® cryogenic upgrading

- Acrion/Firmgreen, CBG licence passed to Terracastus*
- 0.76 kWh/Nm³ raw gas (15 % energy loss)
- Sites close to completion, on hold (?):
 - Novo Gramacho landfill, Rio de Janeiro (Firmgreen)
 - NSR, Helsingborg SWE (Terracastus)

*Business activities suspended due to owner (Volvo) wanting to sell the company

Source: SGC Rapport 270 http://www.sgc.se/en/?pg=1445651)

GtS modular cryogenic upgrading

Footnote? 1990-2006 in the US, Prometheus Energy (5 TPD, 1, 54kWh/Nm3 product gas)

TCR = Total Contaminant Removal; GPP = Gas Treatment Power Package

LBG from farm based biogas?

• Really small scale cryogenic upgrading – is it feasible?

- Using standard equipment, module based
- 35 Nm3/h raw biogas flow <-> 360 kg LBG/day
- 10-15% energy loss; 35 kW heat (60 degr) and CO2 for greenhouse utilisation

Source: SGC Rapport 270 http://www.sgc.se/en/?pg=1445651)

The technology and economy of liquefied biomethane production

2. Normal biogas upgrading followed by small-scale liquefaction

Small scale liquefaction after normal biogas upgrading

Purity requirements for the liquefaction of biomethane

Compound	Limit for liquefaction
Water, H ₂ O	0.5 ppm
Hydrogen sulphide, H ₂ S	3.5 ppm
Carbon dioxide, CO2	50 – 125 ppm

Source: SGC Rapport 270 http://www.sgc.se/en/?pg=1445651)

Small scale liquefaction – Air Liquide

- Polishing + liquefaction of 60 GWh biogas plant
 - Reverse nitrogen Brayton cycle
 - 1.56 kWh/kg LBG (1.12 kWh/Nm3 CH4)
 - -163 bar at 1.5 bar(a) product stream
 - 1MW at 45 degr waste heat stream
 - 84 MSEK CAPEX
 (10 MEUR)

The Lidköping plant, liquefaction supplied by Air Liquide (source: Göteborg Energi)

Small scale liquefaction – Wärtsilä

- Polishing + liquefaction of 40 GWh biogas plant
 - Mixed refrigerant cycle
 - 0.5-0.6 kWh/kg LBG (estimated)
 - 3-25 TPD capacity (170 1,440 Nm3 CH4/h)
 - -160 bar at 2 bar(a) product stream
 - Oslo plant:
 4.5 MEUR CAPEX,
 600 Nm3 CH4/h
 (10TPD)

Source: Wärtsilä

3rd SSLNG Forum 141106 Svensson - Bio-LNG Improves your Carbon Footprint 11

The EGE (Oslo) plant, liquefaction supplied by Wärtsilä

Small scale liquefaction – GTI

• Linde Gas/GTI process

- Mixed refrigerant cycle
- Larger scale, down to 30 TPD (1,700 Nm3 CH4/h)
- 29.3 kWh/MMBtu (1.0 kWh/Nm3 CH4)

Known sites

- USA, 3 landfill sites (Waste Management)
- GasRec, Albury landfill

Bild: Waste Management

Bild: Waste Management

Carbon footprint of biomethane

GHG performance biofuels

GHG calc. methodology differences

GHG performance biofuels (SWE)

SC

Overview, LNG powered truck engine technologies

Engine technology options

• Spark ignited gas engines

- Stoichometric (air/fuel ratio lambda = 1) preferred to leanburn (lambda >>1) due to emissions of Nox
- Typically 30 % higher fuel consumption compared to diesel
- Limit regarding engine size (< 400 hp)

Dual fuel engine technologies

Diesel = liquid spark plug

• Port injected engines

- similar in combustion characteristics to dedicated gas engines
 \rightarrow knocking limitation at high load
- 50-90 % substitution rate (load dependent), 100 % diesel also

• High pressure direct injection engines

- Truer diesel process characteristics
- Only 5 % diesel needed
- Drawback: Only limphome mode possible on pure diesel

Figure 3. Port injected methane (left)and direct injected (DI) methane (Source: Wärtsilä)

on Footprint 19

Available trucks with LNG capability

Scania P-serie - 2014

Spark ignited stoichometric gas engine (280-340 hp) New Scania only 7% fuel consumption penalty mixed driving!

Mercedes Econic, 2015

Volvo FE CNG, 2015

Available trucks with LNG capability

Dual fuel options: Close to diesel like performance (torque, horsepower)

Volvo FM/FH Euro V Euro VI next year (HPDI techn.)

Storage pressure: trend towards cold

SGC Swenskt Gastekniskt www.sgc.se Source: Philippe Heisch, Cryostar

Bio-LNG use in maritime transport?

• Depends on the customers and the market conditions

- LNG is already a big environmental improvement
- IMO regulations on CO2 a future possible market driver
- Higher prices in Baltic region create an opening?
- Green gas principle increase LBG market size!
- But: RED creates barrier to free cross border trading (mass balance requirement on national level for the grid)

LMG

Production costs – biofuels (SWE)

SGC Steknisi Survey Strength

3rd SSLNG Forum 141106 Svensson - Bio-LNG Improves your Carbon Footprint 24

Source: Börjesson, Lundgren, Ahlgren, Nyström (2013)

Bio-LNG Improves your Carbon Footprint

Thank you for your attention!

Any questions?

mattias.svensson@sgc.se

Why biomethane in transports?

Most oil dependent sector in Europe (95-100%)

• Full utilization of energy with solutions available now

- Inevitable heat losses in CHP utilization, wind & sun better alt.
- Commercially available solutions for oil dependent transports of all types (LDV, MDV, HDV, short, medium and long-distant)
- Natural gas and biomethane: freely intermixed and interchangeable
- Evident co-distribution and backup synergies (backup for market fluctuations, process failure)
- Promotional value compensates for added costs
 - Steadily increasing the renewable share gives true greening

Drivers spelled out

Putting a value on the positive externalities of biomethane

Biomethane in road transport

Most common in Europe, Sweden forerunner country

Big fleet operations outside Europe; US future no.1?

USA, maybe 1TWh (2014: 3,9TWh expected!)

New projects happening

India, Canada, Thailand,
 Estonia, China, New
 Zealand, South Korea, South
 Africa, Brazil

Small but growing market

 Guesstimate: 3TWh (2014: 6 due to US development)

Sources: European Biogas Assoc., NGVA Europe, newsletters

"Low indirect impact biofuels" (minimizing risks of indirect land use changes - iLUC)

A. Increased productivity GO!

